Skip to main content

A Mouse Model of Peanut Allergy Induced by Sensitization Through the Gastrointestinal Tract

  • Protocol
  • First Online:
Type 2 Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1799))

Abstract

Animal models of disease enable the study of the pathology, biomarkers, and treatments for the disease being studied. These models become particularly useful in the study of diseases, such as peanut allergy, that currently have no FDA-approved therapy options. Here, we describe a mouse model of peanut allergy using a peanut extract and cholera toxin that can be applied to both BALB/c and C3H/HeJ mouse strains. Sensitization is induced through the gastrointestinal tract resulting in elevated levels of peanut-specific IgE and anaphylaxis upon challenge with peanut proteins. This model has been used to study the cells and molecules involved in the development of peanut allergy and to evaluate novel immunotherapy approaches and the underlying mechanisms of immunotherapy. Potential utilities of this model are numerous and may include studies on microbial influences on peanut allergy and discovery of biomarkers of anaphylaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boyce JA, Assa'ad A, Burks AW, Jones SM, Sampson HA, Wood RA, Plaut M, Cooper SF, Fenton MJ, Arshad SH, Bahna SL, Beck LA, Byrd-Bredbenner C, Camargo CA Jr, Eichenfield L, Furuta GT, Hanifin JM, Jones C, Kraft M, Levy BD, Lieberman P, Luccioli S, McCall KM, Schneider LC, Simon RA, Simons FE, Teach SJ, Yawn BP, Schwaninger JM (2011) Guidelines for the diagnosis and management of food allergy in the United States: summary of the NIAID-sponsored expert panel report. Nutr Res 31(1):61–75. https://doi.org/10.1016/j.nutres.2011.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tang ML, Mullins RJ (2017) Food allergy: is prevalence increasing? Intern Med J 47(3):256–261. https://doi.org/10.1111/imj.13362

    Article  PubMed  Google Scholar 

  3. Sicherer SH, Munoz-Furlong A, Godbold JH, Sampson HA (2010) US prevalence of self-reported peanut, tree nut, and sesame allergy: 11-year follow-up. J Allergy Clin Immunol 125(6):1322–1326. https://doi.org/10.1016/j.jaci.2010.03.029

    Article  CAS  PubMed  Google Scholar 

  4. Ang WX, Church AM, Kulis M, Choi HW, Burks AW, Abraham SN (2016) Mast cell desensitization inhibits calcium flux and aberrantly remodels actin. J Clin Invest 126(11):4103–4118. https://doi.org/10.1172/JCI87492

    Article  PubMed  PubMed Central  Google Scholar 

  5. Burks AW (2008) Peanut allergy. Lancet 371(9623):1538–1546. https://doi.org/10.1016/S0140-6736(08)60659-5

    Article  CAS  PubMed  Google Scholar 

  6. King RM, Knibb RC, Hourihane JO (2009) Impact of peanut allergy on quality of life, stress and anxiety in the family. Allergy 64(3):461–468. https://doi.org/10.1111/j.1398-9995.2008.01843.x

    Article  CAS  PubMed  Google Scholar 

  7. Avery NJ, King RM, Knight S, Hourihane JO (2003) Assessment of quality of life in children with peanut allergy. Pediatr Allergy Immunol 14(5):378–382

    Article  Google Scholar 

  8. Bock SA, Munoz-Furlong A, Sampson HA (2001) Fatalities due to anaphylactic reactions to foods. J Allergy Clin Immunol 107(1):191–193. https://doi.org/10.1067/mai.2001.112031

    Article  CAS  PubMed  Google Scholar 

  9. Bock SA, Munoz-Furlong A, Sampson HA (2007) Further fatalities caused by anaphylactic reactions to food, 2001–2006. J Allergy Clin Immunol 119(4):1016–1018. https://doi.org/10.1016/j.jaci.2006.12.622

    Article  PubMed  Google Scholar 

  10. Iweala OI, Burks AW (2016) Food allergy: our evolving understanding of its pathogenesis, prevention, and treatment. Curr Allergy Asthma Rep 16(5):37. https://doi.org/10.1007/s11882-016-0616-7

    Article  CAS  PubMed  Google Scholar 

  11. Virkud YV, Burks AW, Steele PH, Edwards LJ, Berglund JP, Jones SM, Scurlock AM, Perry TT, Pesek RD, Vickery BP (2017) Novel baseline predictors of adverse events during oral immunotherapy in children with peanut allergy. J Allergy Clin Immunol 139(3):882–888.e5. https://doi.org/10.1016/j.jaci.2016.07.030

    Article  PubMed  Google Scholar 

  12. Burton OT, Logsdon SL, Zhou JS, Medina-Tamayo J, Abdel-Gadir A, Noval Rivas M, Koleoglou KJ, Chatila TA, Schneider LC, Rachid R, Umetsu DT, Oettgen HC (2014) Oral immunotherapy induces IgG antibodies that act through FcgammaRIIb to suppress IgE-mediated hypersensitivity. J Allergy Clin Immunol 134(6):1310–1317.e1316. https://doi.org/10.1016/j.jaci.2014.05.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nowak-Wegrzyn A, Sampson HA (2011) Future therapies for food allergies. J Allergy Clin Immunol 127(3):558–573.; quiz 574–555. https://doi.org/10.1016/j.jaci.2010.12.1098

    Article  PubMed  PubMed Central  Google Scholar 

  14. Plundrich NJ, Kulis M, White BL, Grace MH, Guo R, Burks AW, Davis JP, Lila MA (2014) Novel strategy to create hypoallergenic peanut protein-polyphenol edible matrices for oral immunotherapy. J Agric Food Chem 62(29):7010–7021. https://doi.org/10.1021/jf405773b

    Article  CAS  PubMed  Google Scholar 

  15. Kulis M, Wesley Burks A (2015) Effects of a pre-existing food allergy on the oral introduction of food proteins: findings from a murine model. Allergy 70(1):120–123. https://doi.org/10.1111/all.12519

    Article  CAS  PubMed  Google Scholar 

  16. Kulis M, Gorentla B, Burks AW, Zhong XP (2013) Type B CpG oligodeoxynucleotides induce Th1 responses to peanut antigens: modulation of sensitization and utility in a truncated immunotherapy regimen in mice. Mol Nutr Food Res 57(5):906–915. https://doi.org/10.1002/mnfr.201200410

    Article  CAS  PubMed  Google Scholar 

  17. Kulis M, Macqueen I, Li Y, Guo R, Zhong XP, Burks AW (2012) Pepsinized cashew proteins are hypoallergenic and immunogenic and provide effective immunotherapy in mice with cashew allergy. J Allergy Clin Immunol 130(3):716–723. https://doi.org/10.1016/j.jaci.2012.05.044

    Article  CAS  PubMed  Google Scholar 

  18. Kulis M, Chen X, Lew J, Wang Q, Patel OP, Zhuang Y, Murray KS, Duncan MW, Porterfield HS, WB A, Dreskin SC (2012) The 2S albumin allergens of Arachis hypogaea, Ara h 2 and Ara h 6, are the major elicitors of anaphylaxis and can effectively desensitize peanut-allergic mice. Clin Exp Allergy 42(2):326–336. https://doi.org/10.1111/j.1365-2222.2011.03934.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kulis M, Wan CK, Gorentla BK, Burks AW, Zhong XP (2011) Diacylglycerol kinase zeta deficiency in a non-CD4(+) T-cell compartment leads to increased peanut hypersensitivity. J Allergy Clin Immunol 128(1):212–214. https://doi.org/10.1016/j.jaci.2011.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kulis M, Li Y, Lane H, Pons L, Burks W (2011) Single-tree nut immunotherapy attenuates allergic reactions in mice with hypersensitivity to multiple tree nuts. J Allergy Clin Immunol 127(1):81–88. https://doi.org/10.1016/j.jaci.2010.09.014

    Article  CAS  PubMed  Google Scholar 

  21. Orgel KA, Duan S, Wright BL, Maleki SJ, Wolf JC, Vickery BP, Burks AW, Paulson JC, Kulis MD, Macauley MS (2017) Exploiting CD22 on antigen-specific B cells to prevent allergy to the major peanut allergen Ara h 2. J Allergy Clin Immunol 139(1):366–369.e362. https://doi.org/10.1016/j.jaci.2016.06.053

    Article  CAS  PubMed  Google Scholar 

  22. Pons L, Ponnappan U, Hall RA, Simpson P, Cockrell G, West CM, Sampson HA, Helm RM, Burks AW (2004) Soy immunotherapy for peanut-allergic mice: modulation of the peanut-allergic response. J Allergy Clin Immunol 114(4):915–921. https://doi.org/10.1016/j.jaci.2004.06.049

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Orgel, K., Kulis, M. (2018). A Mouse Model of Peanut Allergy Induced by Sensitization Through the Gastrointestinal Tract. In: Reinhardt, R. (eds) Type 2 Immunity. Methods in Molecular Biology, vol 1799. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-7896-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7896-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7895-3

  • Online ISBN: 978-1-4939-7896-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics