Skip to main content

CPMG Experiments for Protein Minor Conformer Structure Determination

  • Protocol
  • First Online:
Protein NMR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1688))

Abstract

CPMG relaxation dispersion NMR experiments have emerged as a powerful method to characterize protein minor states that are in exchange with a visible dominant conformation, and have lifetimes between ~0.5 and 5 milliseconds (ms) and populations greater than 0.5%. The structure of the minor state can, in favorable cases, be determined from the parameters provided by the CPMG relaxation dispersion experiments. Here, we go through the intricacies of setting up these powerful CPMG experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karplus M (2000) Aspects of protein reaction dynamics: deviations from simple behavior. J Phys Chem B 104:11–27

    Article  CAS  Google Scholar 

  2. Austin RH, Beeson KW, Eisenstein L, Frauenfelder H, Gunsalus IC (1975) Dynamics of ligand binding to myoglobin. Biochemistry 14:5355–5373

    Article  CAS  PubMed  Google Scholar 

  3. Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598–1603

    Article  CAS  PubMed  Google Scholar 

  4. Palmer AG (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104:3623–3640

    Article  CAS  PubMed  Google Scholar 

  5. Sekhar A, Kay LE (2013) NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers. Proc Natl Acad Sci USA 110:12867–12874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chandler D (1987) Introduction to modern statistical mechanics. Oxford University Press, Oxford

    Google Scholar 

  7. Cavanagh J, Fairbrother WJ, Palmer AG, Rance M, Skelton NJ (2006) Protein NMR spectroscopy, principles and practice, 2nd edn. Academic, New York

    Google Scholar 

  8. Mulder FA, Skrynnikov NR, Hon B, Dahlquist FW, Kay LE (2001) Measurement of slow (μs-ms) time scale dynamics in protein side chains by 15N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. J Am Chem Soc 123:967–975

    Article  CAS  PubMed  Google Scholar 

  9. Palmer AG 3rd, Grey MJ, Wang C (2005) Solution NMR spin relaxation methods for characterizing chemical exchange in high-molecular-weight systems. Meth Enzymol 394:430–465

    Article  CAS  PubMed  Google Scholar 

  10. Korzhnev DM, Kay LE (2008) Probing invisible, low-populated states of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding. Acc Chem Res 41:442–451

    Article  CAS  PubMed  Google Scholar 

  11. Hansen DF, Vallurupalli P, Lundstrom P, Neudecker P, Kay LE (2008) Probing chemical shifts of invisible states of proteins with relaxation dispersion NMR spectroscopy: how well can we do? J Am Chem Soc 130:2667–2675

    Article  CAS  PubMed  Google Scholar 

  12. Lundstrom P, Vallurupalli P, Hansen DF, Kay LE (2009) Isotope labeling methods for studies of excited protein states by relaxation dispersion NMR spectroscopy. Nat Protoc 4:1641–1648

    Article  PubMed  Google Scholar 

  13. Mccoy MA, Mueller L (1992) Selective shaped pulse decoupling in NMR - Homonuclear [13C]carbonyl decoupling. J Am Chem Soc 114:2108–2112

    Article  CAS  Google Scholar 

  14. Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141

    Google Scholar 

  15. Morris GA, Freeman R (1979) Enhancement of nuclear magnetic-resonance signals by polarization transfer. J Am Chem Soc 101:760–762

    Article  CAS  Google Scholar 

  16. Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665

    Article  CAS  Google Scholar 

  17. Ikura M, Kay LE, Krinks M, Bax A (1991) Triple-resonance multidimensional NMR study of calmodulin complexed with the binding domain of skeletal muscle myosin light-chain kinase: indication of a conformational change in the central helix. Biochemistry 30:5498–5504

    Article  CAS  PubMed  Google Scholar 

  18. Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2:661–665

    Article  CAS  PubMed  Google Scholar 

  19. Vallurupalli P, Hansen DF, Stollar E, Meirovitch E, Kay LE (2007) Measurement of bond vector orientations in invisible excited states of proteins. Proc Natl Acad Sci USA 104:18473–18477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kupce E, Freeman R (1996) Optimized adiabatic pulses for wideband spin inversion. J Magn Reson A 118:299–303

    Article  CAS  Google Scholar 

  21. Hansen DF, Vallurupalli P, Kay LE (2008) An improved 15N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins. J Phys Chem B 112:5898–5904

    Article  CAS  PubMed  Google Scholar 

  22. Jiang B, Yu BH, Zhang X, Liu ML, Yang DW (2015) A 15N CPMG relaxation dispersion experiment more resistant to resonance offset and pulse imperfection. J Magn Reson 257:1–7

    Article  CAS  PubMed  Google Scholar 

  23. Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broadband decoupling: WALTZ-16. J Magn Reson 52:335–338

    CAS  Google Scholar 

  24. Ishima R, Torchia DA (2003) Extending the range of amide proton relaxation dispersion experiments in proteins using a constant-time relaxation-compensated CPMG approach. J Biomol NMR 25:243–248

    Article  CAS  PubMed  Google Scholar 

  25. Vallurupalli P, Bouvignies G, Kay LE (2011) Increasing the exchange time-scale that can be probed by CPMG relaxation dispersion NMR. J Phys Chem B 115:14891–14900

    Article  CAS  PubMed  Google Scholar 

  26. Lundstrom P, Hansen DF, Kay LE (2008) Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: comparison between uniformly and selectively 13C labeled samples. J Biomol NMR 42:35–47

    Article  CAS  PubMed  Google Scholar 

  27. Lundstrom P, Hansen DF, Vallurupalli P, Kay LE (2009) Accurate measurement of alpha proton chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy. J Am Chem Soc 131:1915–1926

    Article  CAS  PubMed  Google Scholar 

  28. Kupce E, Freeman R (1995) Stretched adiabatic pulses for broadband spin inversion. J Magn Reson A 117:246–256

    Article  CAS  Google Scholar 

  29. Kupce E, Wagner G (1996) Multisite band-selective decoupling in proteins. J Magn Reson B 110:309–312

    Article  CAS  PubMed  Google Scholar 

  30. Kupce E, Freeman R (1995) Adiabatic pulses for wide-band inversion and broad-band decoupling. J Magn Reson A 115:273–276

    Article  CAS  Google Scholar 

  31. Brown LR, Sanctuary BC (1991) Hetero-Tocsy experiments with WALTZ and DIPSI mixing sequences. J Magn Reson 91:413–421

    CAS  Google Scholar 

  32. Orekhov VY, Korzhnev DM, Kay LE (2004) Double- and zero-quantum NMR relaxation dispersion experiments sampling millisecond time scale dynamics in proteins. J Am Chem Soc 126:1886–1891

    Article  CAS  PubMed  Google Scholar 

  33. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe - a multidimensional spectral processing system based on Unix pipes. J Biomol NMR 6:277–293

    Article  CAS  PubMed  Google Scholar 

  34. Goddard TD, Kneller DG SPARKY 3 University of California, San Francisco

    Google Scholar 

  35. Kristensen S, Hansen D (2005) FuDA: a function and data fitting and analysis package

    Google Scholar 

  36. Ahlner A, Carlsson M, Jonsson BH, Lundstrom P (2013) PINT: a software for integration of peak volumes and extraction of relaxation rates. J Biomol NMR 56:191–202

    Article  CAS  PubMed  Google Scholar 

  37. Korzhneva DM, Ibraghimov IV, Billeter M, Orekhov VY (2001) MUNIN: application of three-way decomposition to the analysis of heteronuclear NMR relaxation data. J Biomol NMR 21:263–268

    Article  CAS  PubMed  Google Scholar 

  38. Sekhar A, Vallurupalli P, Kay LE (2012) Folding of the four-helix bundle FF domain from a compact on-pathway intermediate state is governed predominantly by water motion. Proc Natl Acad Sci USA 109:19268–19273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hansen DF CATIA. http://www.ucl.ac.uk/hansen-lab

  40. Bouvignies G (2012) Chemex. https://github.com/gbouvignies/chemex/releases

  41. McConnell HM (1958) Reaction rates by nuclear magnetic resonance. J Chem Phys 28:430–431

    Article  CAS  Google Scholar 

  42. Mulder FA, Mittermaier A, Hon B, Dahlquist FW, Kay LE (2001) Studying excited states of proteins by NMR spectroscopy. Nat Struct Biol 8:932–935

    Article  CAS  PubMed  Google Scholar 

  43. Korzhnev DM, Salvatella X, Vendruscolo M, Di Nardo AA, Davidson AR, Dobson CM, Kay LE (2004) Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature 430:586–590

    Article  CAS  PubMed  Google Scholar 

  44. Vallurupalli P, Kay LE (2006) Complementarity of ensemble and single-molecule measures of protein motion: a relaxation dispersion NMR study of an enzyme complex. Proc Natl Acad Sci USA 103:11910–11915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vallurupalli P, Bouvignies G, Kay LE (2012) Studying “invisible” excited protein states in slow exchange with a major state conformation. J Am Chem Soc 134:8148–8161

    Article  CAS  PubMed  Google Scholar 

  46. Fawzi NL, Ying J, Ghirlando R, Torchia DA, Clore GM (2011) Atomic-resolution dynamics on the surface of amyloid-beta protofibrils probed by solution NMR. Nature 480:268–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Palmer AG, Massi F (2006) Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem Rev 106:1700–1719

    Article  CAS  PubMed  Google Scholar 

  48. Skrynnikov NR, Dahlquist FW, Kay LE (2002) Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments. J Am Chem Soc 124:12352–12360

    Article  CAS  PubMed  Google Scholar 

  49. Auer R, Hansen DF, Neudecker P, Korzhnev DM, Muhandiram DR, Konrat R, Kay LE (2010) Measurement of signs of chemical shift differences between ground and excited protein states: a comparison between H(S/M)QC and R methods. J Biomol NMR 46:205–216

    Article  CAS  PubMed  Google Scholar 

  50. Tamiola K, Acar B, Mulder FA (2010) Sequence-specific random coil chemical shifts of intrinsically disordered proteins. J Am Chem Soc 132:18000–18003

    Article  CAS  PubMed  Google Scholar 

  51. Sanchez-Medina C, Sekhar A, Vallurupalli P, Cerminara M, Munoz V, Kay LE (2014) Probing the free energy landscape of the fast-folding gpW protein by relaxation dispersion NMR. J Am Chem Soc 136:7444–7451

    Article  CAS  PubMed  Google Scholar 

  52. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shen Y, Bax A (2015) Protein structural information derived from NMR chemical shift with the neural network program TALOS-N. Meth Mol Biol 1260:17–32

    Article  CAS  Google Scholar 

  54. Vallurupalli P, Hansen DF, Kay LE (2008) Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy. Proc Natl Acad Sci USA 105:11766–11771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bouvignies G, Vallurupalli P, Hansen DF, Correia BE, Lange O, Bah A, Vernon RM, Dahlquist FW, Baker D, Kay LE (2011) Solution structure of a minor and transiently formed state of a T4 lysozyme mutant. Nature 477:111–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Korzhnev DM, Religa TL, Banachewicz W, Fersht AR, Kay LE (2010) A transient and low-populated protein-folding intermediate at atomic resolution. Science 329:1312–1316

    Article  CAS  PubMed  Google Scholar 

  57. Neudecker P, Robustelli P, Cavalli A, Walsh P, Lundstrom P, Zarrine-Afsar A, Sharpe S, Vendruscolo M, Kay LE (2012) Structure of an intermediate state in protein folding and aggregation. Science 336:362–366

    Article  CAS  PubMed  Google Scholar 

  58. Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu GH, Eletsky A, Wu YB, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105:4685–4690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci USA 104:9615–9620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Prestegard JH, al-Hashimi HM, Tolman JR (2000) NMR structures of biomolecules using field oriented media and residual dipolar couplings. Q Rev Biophys 33(4):371–424

    Article  CAS  PubMed  Google Scholar 

  61. Bax A, Kontaxis G, Tjandra N (2001) Dipolar couplings in macromolecular structure determination. Meth Enzymol 339:127–174

    Article  CAS  PubMed  Google Scholar 

  62. Hansen DF, Vallurupalli P, Kay LE (2008) Quantifying two-bond 1HN-13CO and one-bond 1Hα-13Cα dipolar couplings of invisible protein states by spin-state selective relaxation dispersion NMR spectroscopy. J Am Chem Soc 130:8397–8405

    Article  CAS  PubMed  Google Scholar 

  63. Vallurupalli P, Hansen DF, Kay LE (2008) Probing structure in invisible protein states with anisotropic NMR chemical shifts. J Am Chem Soc 130:2734–2735

    Article  CAS  PubMed  Google Scholar 

  64. Skrynnikov NR, Mulder FA, Hon B, Dahlquist FW, Kay LE (2001) Probing slow time scale dynamics at methyl-containing side chains in proteins by relaxation dispersion NMR measurements: application to methionine residues in a cavity mutant of T4 lysozyme. J Am Chem Soc 123:4556–4566

    Article  CAS  PubMed  Google Scholar 

  65. Lundstrom P, Lin H, Kay LE (2009) Measuring 13Cβ chemical shifts of invisible excited states in proteins by relaxation dispersion NMR spectroscopy. J Biomol NMR 44:139–155

    Article  PubMed  Google Scholar 

  66. Hansen DF, Neudecker P, Vallurupalli P, Mulder FA, Kay LE (2010) Determination of Leu side-chain conformations in excited protein states by NMR relaxation dispersion. J Am Chem Soc 132:42–43

    Article  CAS  PubMed  Google Scholar 

  67. Hansen DF, Kay LE (2011) Determining valine side-chain rotamer conformations in proteins from methyl 13C chemical shifts: application to the 360 kDa half-proteasome. J Am Chem Soc 133:8272–8281

    Article  CAS  PubMed  Google Scholar 

  68. Hiller S, Arthanari H, Wagner G (2009) The T-lock: automated compensation of radio-frequency induced sample heating. J Biomol NMR 44:69–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ammann C, Meier P, Merbach AE (1982) A simple multi-nuclear NMR thermometer. J Magn Reson 46:319–321

    CAS  Google Scholar 

Download references

Acknowledgments

DFH and PV are grateful to Prof. Lewis E Kay (University of Toronto), Dr. Ranjith Muhandiram, Dr. Algirdas Velyvis, Dr. Dmitry Korzhnev, Dr. Vitali Tugarinov, Dr. Philipp Neudecker, Dr. Patrik Lundstrom, and other members of the Kay lab who exposed them to many of the methods presented here. DFH acknowledges the Biotechnology and Biological Sciences Research Council UK (BBSRC) for financial support. PV is supported by generous startup grant from TCIS/TIFH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anusha B. Gopalan , D. Flemming Hansen or Pramodh Vallurupalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gopalan, A.B., Hansen, D.F., Vallurupalli, P. (2018). CPMG Experiments for Protein Minor Conformer Structure Determination. In: Ghose, R. (eds) Protein NMR. Methods in Molecular Biology, vol 1688. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7386-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7386-6_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7385-9

  • Online ISBN: 978-1-4939-7386-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics