Skip to main content

Polyester-Based Nanoparticles for the Encapsulation of Monoclonal Antibodies

  • Protocol
  • First Online:
Recombinant Glycoprotein Production

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1674))

Abstract

Aliphatic polyesters have been widely explored for biomedical applications (e.g., drug delivery systems, biomedical devices, and tissue engineering). Recently, polyesters have been used in nanoparticle formulations for the controlled release of monoclonal antibodies (mAbs) for the enhanced efficacy of antibody-based therapy. Polyester-based nanoparticles for mAb delivery provide decreased antibody dosage, increased antibody stability and protection and longer therapeutic action, ultimately translating to an increased therapeutic index. Additionally, nanoencapsulation holds the potential for the selective cellular recognition and internalization of mAbs, in the disease context when intracellular organelles and molecules (e.g., enzymes, transcription factors and oncogenic proteins) are the preferred target. We present here a detailed method to prepare mAb-loaded polyester-based nanoparticles and the various techniques to characterize the resulting nanoparticles and mAb structure. Finally, we highlight different biological approaches to assess the in vitro bioactivity of the antibody upon nanoparticle release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12(4):278–287

    Article  CAS  PubMed  Google Scholar 

  2. Li J, Zhu Z (2010) Research and development of next generation of antibody-based therapeutics. Acta Pharmacol Sin 31(9):1198–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ecker DM, Jones SD, Levine HL (2015) The therapeutic monoclonal antibody market. mAbs 7(1):9–14

    Article  CAS  PubMed  Google Scholar 

  4. Chames P, Van Regenmortel M, Weiss E, Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157(2):220–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Modjtahedi H, Ali S, Essapen S (2012) Therapeutic application of monoclonal antibodies in cancer: advances and challenges. Br Med Bull 104(1):41–59

    Article  CAS  PubMed  Google Scholar 

  6. Beckman RA, Weiner LM, Davis HM (2007) Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer 109(2):170–179

    Article  CAS  PubMed  Google Scholar 

  7. Thurber GM, Schmidt MM, Wittrup KD (2008) Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev 60(12):1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Samaranayake H, Wirth T, Schenkwein D, Raty JK, Yla-Herttuala S (2009) Challenges in monoclonal antibody-based therapies. Ann Med 41(5):322–331

    Article  CAS  PubMed  Google Scholar 

  9. Arruebo M, Valladares M, González-Fernández Á (2009) Antibody-conjugated nanoparticles for biomedical applications. J Nanomater 2009:24

    Article  Google Scholar 

  10. Ravikumar M (2016) Handbook of polyester drug delivery systems. Pan Stanford, USA

    Google Scholar 

  11. Marin E, Briceño MI, Caballero-George C (2013) Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomedicine 8:3071–3091

    PubMed  PubMed Central  Google Scholar 

  12. Varshochian R, Jeddi-Tehrani M, Mahmoudi AR, Khoshayand MR, Atyabi F, Sabzevari A, Esfahani MR, Dinarvand R (2013) The protective effect of albumin on bevacizumab activity and stability in PLGA nanoparticles intended for retinal and choroidal neovascularization treatments. Eur J Pharm Sci 50(3–4):341–352

    Article  CAS  PubMed  Google Scholar 

  13. Son S, Lee WR, Joung YK, Kwon MH, Kim YS, Park KD (2009) Optimized stability retention of a monoclonal antibody in the PLGA nanoparticles. Int J Pharm 368(1–2):178–185

    Article  CAS  PubMed  Google Scholar 

  14. Grainger DW (2004) Controlled-release and local delivery of therapeutic antibodies. Expert Opin Biol Ther 4(7):1029–1044

    Article  CAS  PubMed  Google Scholar 

  15. Yadav SC, Kumari A, Yadav R (2011) Development of peptide and protein nanotherapeutics by nanoencapsulation and nanobioconjugation. Peptides 32(1):173–187

    Article  CAS  PubMed  Google Scholar 

  16. Cardoso MM, Peca IN, Roque AC (2012) Antibody-conjugated nanoparticles for therapeutic applications. Curr Med Chem 19(19):3103–3127

    Article  CAS  PubMed  Google Scholar 

  17. Srinivasan AR, Lakshmikuttyamma A, Shoyele SA (2013) Investigation of the stability and cellular uptake of self-associated monoclonal antibody (MAb) nanoparticles by non-small lung cancer cells. Mol Pharm 10(9):3275–3284

    Article  CAS  PubMed  Google Scholar 

  18. Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation: I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2(1):8–21

    Article  Google Scholar 

  19. Li F, Hurley B, Liu Y, Leonard B, Griffith M (2012) Controlled release of bevacizumab through nanospheres for extended treatment of age-related macular degeneration. Open Ophthalmol J 6:54–58

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gdowski A, Ranjan A, Mukerjee A, Vishwanatha J (2015) Development of biodegradable nanocarriers loaded with a monoclonal antibody. Int J Mol Sci 16(2):3990–3995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Almeida A, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59(6):478–490

    Article  CAS  PubMed  Google Scholar 

  22. Shoyele SA, Slowey A (2006) Prospects of formulating proteins/peptides as aerosols for pulmonary drug delivery. Int J Pharm 314(1):1–8

    Article  CAS  PubMed  Google Scholar 

  23. Fonte P, Soares S, Sousa F, Costa A, Seabra V, Reis S, Sarmento B (2014) Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles. Biomacromolecules 15(10):3753–3765

    Article  CAS  PubMed  Google Scholar 

  24. Hawe A, Kasper JC, Friess W, Jiskoot W (2009) Structural properties of monoclonal antibody aggregates induced by freeze-thawing and thermal stress. Eur J Pharm Sci 38(2):79–87

    Article  CAS  PubMed  Google Scholar 

  25. Sarmento B, Ferreira DC, Jorgensen L, van de Weert M (2007) Probing insulin’s secondary structure after entrapment into alginate/chitosan nanoparticles. Eur J Pharm Biopharm 65(1):10–17

    Article  CAS  PubMed  Google Scholar 

  26. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chelius D, Ruf P, Plöscher M, Liedtke R, Gansberger E, Hess J, Wasiliu M, Lindhofer H (2010) Structural and functional characterization of the trifunctional antibody catumaxomab. mAbs 2(3):309–319

    Article  PubMed  PubMed Central  Google Scholar 

  28. Garidel P, Hegyi M, Bassarab S, Weichel M (2008) A rapid, sensitive and economical assessment of monoclonal antibody conformational stability by intrinsic tryptophan fluorescence spectroscopy. Biotechnol J 3(9–10):1201–1211

    Article  CAS  PubMed  Google Scholar 

  29. Oliveira Silva C, Petersen SB, Pinto Reis C, Rijo P, Molpeceres J, Vorum H, Neves-Petersen MT (2015) Lysozyme photochemistry as a function of temperature. The protective effect of nanoparticles on lysozyme photostability. PLoS One 10(12):e0144454

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8(8):579–591

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Fei D, Vanderlaan M, Song A (2004) Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis 7(4):335–345

    Article  CAS  PubMed  Google Scholar 

  32. Goel HL, Mercurio AM (2013) VEGF targets the tumour cell. Nat Rev Cancer 13(12):871–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ferrara N, Hillan KJ, Gerber H-P, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3(5):391–400

    Article  CAS  PubMed  Google Scholar 

  34. Carneiro A, Falcao M, Azevedo I, Falcao Reis F, Soares R (2009) Multiple effects of bevacizumab in angiogenesis: implications for its use in age-related macular degeneration. Acta Ophthalmol 87(5):517–523

    Article  CAS  PubMed  Google Scholar 

  35. Stockert JC, Blázquez-Castro A, Cañete M, Horobin RW, Villanueva Á (2012) MTT assay for cell viability: intracellular localization of the formazan product is in lipid droplets. Acta Histochem 114(8):785–796

    Article  CAS  PubMed  Google Scholar 

  36. Cell Proliferation ELISA, BrdU (colorimetric). Roche Diagnostics, Mannheim, Germany. http://www.sigmaaldrich.com/catalog/product/roche/11647229001?lang=en&region=NO. Accessed 10 July 2016

  37. Shi K, Cui F, Yamamoto H, Kawashima Y (2009) Optimized formulation of high-payload PLGA nanoparticles containing insulin–lauryl sulfate complex. Drug Dev Ind Pharm 35(2):177–184

    Article  CAS  PubMed  Google Scholar 

  38. Cohen-Sela E, Chorny M, Koroukhov N, Danenberg HD, Golomb G (2009) A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release 133(2):90–95

    Article  CAS  PubMed  Google Scholar 

  39. Kelly SM, Price NC (2000) The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci 1(4):349–384

    Article  CAS  PubMed  Google Scholar 

  40. Tetin SY, Linthicum DS (1996) Circular dichroism spectroscopy of monoclonal antibodies that bind a superpotent guanidinium sweetener ligand. Biochemistry 35(4):1258–1264

    Article  CAS  PubMed  Google Scholar 

  41. Joshi V, Shivach T, Yadav N, Rathore AS (2014) Circular dichroism spectroscopy as a tool for monitoring aggregation in monoclonal antibody therapeutics. Anal Chem 86(23):11606–11613

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Flávia Sousa would like to thank to Fundação para a Ciência e a Tecnologia (FCT), Portugal for financial support (Grant SFRH/BD/112201/2015). Patrick J. Kennedy gratefully acknowledges the BiotechHealth Programme (Doctoral Programme in Cellular and Molecular Biotechnology Applied to Health Sciences) and FCT for financial support (SFRH/BD/99036/2013) and beyond. This work was also financed by FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operational Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Inovação in the framework of the projects “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274) and UID/BIM/04293/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Sarmento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sousa, F., Fonte, P., Cruz, A., Kennedy, P.J., Pinto, I.M., Sarmento, B. (2018). Polyester-Based Nanoparticles for the Encapsulation of Monoclonal Antibodies. In: Picanço-Castro, V., Swiech, K. (eds) Recombinant Glycoprotein Production. Methods in Molecular Biology, vol 1674. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7312-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7312-5_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7311-8

  • Online ISBN: 978-1-4939-7312-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics