Skip to main content

Using Cloning to Amplify Neuronal Genomes for Whole-Genome Sequencing and Comprehensive Mutation Detection and Validation

  • Protocol
  • First Online:
Genomic Mosaicism in Neurons and Other Cell Types

Abstract

Recent studies of somatic mutation in neurons and other cell types suggest that somatic cells can acquire hundreds to thousands of new mutations over their lifetimes. Each individual mutation can have extremely low prevalence, with many mutations restricted to a single cell. Because of their rarity, somatic mutations can be challenging to detect and reliably distinguish from false-positive calls arising from amplification, sequencing, or bioinformatic methods. In these scenarios, a variety of methods are required to compensate for the limited applicability and technical artifacts inherent in any single approach. In the method we describe, somatic cell nuclear transfer (SCNT, also known as cloning) is used to reprogram single neurons to blastocysts from which we derive embryonic stem cells. Division of these cells faithfully amplifies the neuronal genome for next-generation sequencing and genome-wide mutation detection. This approach allows the detection of false positives due to amplification artifacts and is applicable to all classes of mutations. While it is both sensitive and reliable, our method is lower throughput than single-cell sequencing-based approaches and may also fail to amplify the most severely compromised neuronal genomes. In this chapter, we outline current methods for generating neuron-derived SCNT embryonic cell lines, discuss best practices for genome-wide mutation detection, and address the advantages and limitations of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rehen SK, McConnell MJ, Kaushal D, Kingsbury MA, Yang AH, Chun J (2001) Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc Natl Acad Sci 98(23):13361–13366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Muotri AR, Chu VT, Marchetto MCN, Deng W, Moran JV, Gage FH (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435(7044):903–910

    Article  CAS  PubMed  Google Scholar 

  3. Rehen SK, Yung YC, McCreight MP, Kaushal D, Yang AH, Almeida BSV, Kingsbury MA, Cabral KMS, McConnell MJ, Anliker B, Fontanoz M, Chun J (2005) Constitutional aneuploidy in the normal human brain. J Neurosci 25(9):2176–2180

    Article  CAS  PubMed  Google Scholar 

  4. Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, Lovci MT, Morell M, O’Shea KS, Moran JV, Gage FH (2009) L1 retrotransposition in human neural progenitor cells. Nature 460(7259):1127–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F, Brennan PM, Rizzu P, Smith S, Fell M, Talbot RT, Gustincich S, Freeman TC, Mattick JS, Hume DA, Heutink P, Carninci P, Jeddeloh JA, Faulkner GJ (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479(7374):534–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Evrony GD, Cai X, Lee E, Hills LB, Elhosary PC, Lehmann HS, Parker JJ, Atabay KD, Gilmore EC, Poduri A, Park PJ, Walsh CA (2012) Single-neuron sequencing analysis of L1 Retrotransposition and somatic mutation in the human brain. Cell 151(3):483–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Poduri A, Evrony Gilad D, Cai X, Elhosary Princess C, Beroukhim R, Lehtinen Maria K, Hills LB, Heinzen Erin L, Hill A, Hill RS, Barry Brenda J, Bourgeois Blaise FD, Riviello James J, Barkovich AJ, Black Peter M, Ligon Keith L, Walsh Christopher A (2012) Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 74(1):41–48. doi:10.1016/j.neuron.2012.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C, Shumilina S, Lasken RS, Vermeesch JR, Hall IM, Gage FH (2013) Mosaic copy number variation in human neurons. Science 342(6158):632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Suberbielle E, Sanchez PE, Kravitz AV, Wang X, Ho K, Eilertson K, Devidze N, Kreitzer AC, Mucke L (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-[beta]. Nat Neurosci 16(5):613–621. doi:10.1038/nn.3356; http://www.nature.com/neuro/journal/v16/n5/abs/nn.3356.html#supplementary-information

  10. Gole J, Gore A, Richards A, Chiu Y-J, Fung H-L, Bushman D, Chiang H-I, Chun J, Lo Y-H, Zhang K (2013) Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells. Nat Biotechnol 31(12):1126–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Evrony Gilad D, Lee E, Mehta Bhaven K, Benjamini Y, Johnson Robert M, Cai X, Yang L, Haseley P, Lehmann Hillel S, Park Peter J, Walsh Christopher A (2014) Cell lineage analysis in human brain using endogenous Retroelements. Neuron 85(1):49–59. doi:10.1016/j.neuron.2014.12.028

    Article  Google Scholar 

  12. Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK, Karger A, Lee S, Chittenden TW, D’Gama AM, Cai X, Luquette LJ, Lee E, Park PJ, Walsh CA (2015) Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350(6256):94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Upton Kyle R, Gerhardt Daniel J, Jesuadian JS, Richardson Sandra R, Sánchez-Luque Francisco J, Bodea Gabriela O, Ewing Adam D, Salvador-Palomeque C, van der Knaap MS, Brennan Paul M, Vanderver A, Faulkner Geoffrey J (2015) Ubiquitous L1 mosaicism in hippocampal neurons. Cell 161(2):228–239. doi:10.1016/j.cell.2015.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hazen Jennifer L, Faust Gregory G, Rodriguez Alberto R, Ferguson William C, Shumilina S, Clark Royden A, Boland Michael J, Martin G, Chubukov P, Tsunemoto Rachel K, Torkamani A, Kupriyanov S, Hall Ira M, Baldwin Kristin K (2016) The complete genome sequences, unique mutational spectra, and developmental potency of adult neurons revealed by cloning. Neuron 89(6):1223–1236. doi:10.1016/j.Neuron.2016.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Erwin JA, Paquola ACM, Singer T, Gallina I, Novotny M, Quayle C, Bedrosian TA, Alves FIA, Butcher CR, Herdy JR, Sarkar A, Lasken RS, Muotri AR, Gage FH (2016) L1-associated genomic regions are deleted in somatic cells of the healthy human brain. Nat Neurosci 19(12):1583–1591. doi:10.1038/nn.4388; http://www.nature.com/neuro/journal/v19/n12/abs/nn.4388.html#supplementary-information

  16. Cai X, Evrony Gilad D, Lehmann Hillel S, Elhosary Princess C, Mehta Bhaven K, Poduri A, Walsh Christopher A (2014) Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep 8(5):1280–1289. doi:10.1016/j.celrep.2014.07.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lathe R, Harris A (2009) Differential display detects host nucleic acid motifs altered in scrapie-infected brain. J Mol Biol 392(3):813–822. doi:10.1016/j.jmb.2009.07.045

    Article  CAS  PubMed  Google Scholar 

  18. Jeong B-H, Lee Y-J, Carp RI, Kim Y-S (2010) The prevalence of human endogenous retroviruses in cerebrospinal fluids from patients with sporadic Creutzfeldt–Jakob disease. J Clin Virol 47(2):136–142

    Article  CAS  PubMed  Google Scholar 

  19. Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, Nakashima K, Gage FH (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468(7322):443–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Douville R, Liu J, Rothstein J, Nath A (2011) Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis. Ann Neurol 69(1):141–151. doi:10.1002/ana.22149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaneko H, Dridi S, Tarallo V, Gelfand BD, Fowler BJ, Cho WG, Kleinman ME, Ponicsan SL, Hauswirth WW, Chiodo VA, Kariko K, Yoo JW, D-k L, Hadziahmetovic M, Song Y, Misra S, Chaudhuri G, Buaas FW, Braun RE, Hinton DR, Zhang Q, Grossniklaus HE, Provis JM, Madigan MC, Milam AH, Justice NL, Albuquerque RJC, Blandford AD, Bogdanovich S, Hirano Y, Witta J, Fuchs E, Littman DR, Ambati BK, Rudin CM, Chong MMW, Provost P, Kugel JF, Goodrich JA, Dunaief JL, Baffi JZ, Ambati J (2011) DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471(7338):325–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coufal NG, Garcia-Perez JL, Peng GE, Marchetto MCN, Muotri AR, Mu Y, Carson CT, Macia A, Moran JV, Gage FH (2011) Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc Natl Acad Sci 108(51):20382–20387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tan H, Qurashi A, Poidevin M, Nelson DL, Li H, Jin P (2012) Retrotransposon activation contributes to fragile X premutation rCGG-mediated neurodegeneration. Hum Mol Genet 21(1):57–65

    Article  PubMed  Google Scholar 

  24. Li W, Jin Y, Prazak L, Hammell M, Dubnau J (2012) Transposable elements in TDP-43-mediated neurodegenerative disorders. PLoS One 7(9):e44099. doi:10.1371/journal.pone.0044099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li W, Prazak L, Chatterjee N, Gruninger S, Krug L, Theodorou D, Dubnau J (2013) Activation of transposable elements during aging and neuronal decline in drosophila. Nat Neurosci 16(5):529–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bundo M, Toyoshima M, Okada Y, Akamatsu W, Ueda J, Nemoto-Miyauchi T, Sunaga F, Toritsuka M, Ikawa D, Kakita A, Kato M, Kasai K, Kishimoto T, Nawa H, Okano H, Yoshikawa T, Kato T, Iwamoto K (2014) Increased L1 Retrotransposition in the neuronal genome in schizophrenia. Neuron 81(2):306–313. doi:10.1016/j.neuron.2013.10.053

    Article  CAS  PubMed  Google Scholar 

  27. Borgesius NZ, de Waard MC, van der Pluijm I, Omrani A, Zondag GCM, van der Horst GTJ, Melton DW, Hoeijmakers JHJ, Jaarsma D, Elgersma Y (2011) Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair. J Neurosci 31(35):12543

    Article  CAS  PubMed  Google Scholar 

  28. Madabhushi R, Pan L, Tsai L-H (2014) DNA damage and its links to neurodegeneration. Neuron 83(2):266–282. doi:10.1016/j.neuron.2014.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jeppesen DK, Bohr VA, Stevnsner T (2011) DNA repair deficiency in neurodegeneration. Prog Neurobiol 94(2):166–200. doi:10.1016/j.pneurobio.2011.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Poduri A, Evrony GD, Cai X, Walsh CA (2013) Somatic mutation, genomic variation, and neurological disease. Science 341(6141):1237758

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shendure J, Akey JM (2015) The origins, determinants, and consequences of human mutations. Science 349(6255):1478–1483

    Article  CAS  PubMed  Google Scholar 

  32. McKinnon PJ (2013) Maintaining genome stability in the nervous system. Nat Neurosci 16(11):1523–1529. doi:10.1038/nn.3537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gawad C, Koh W, Quake SR (2016) Single-cell genome sequencing: current state of the science. Nat Rev Genet 17(3):175–188. doi:10.1038/nrg.2015.16

    Article  CAS  PubMed  Google Scholar 

  34. Macaulay IC, Voet T (2014) Single cell genomics: advances and future perspectives. PLoS Genet 10(1):e1004126. doi:10.1371/journal.pgen.1004126

    Article  PubMed  PubMed Central  Google Scholar 

  35. Herrup K, Neve R, Ackerman SL, Copani A (2004) Divide and die: cell cycle events as triggers of nerve cell death. J Neurosci 24(42):9232

    Article  CAS  PubMed  Google Scholar 

  36. Hiler D, Chen X, Hazen J, Kupriyanov S, Carroll Patrick A, Qu C, Xu B, Johnson D, Griffiths L, Frase S, Rodriguez Alberto R, Martin G, Zhang J, Jeon J, Fan Y, Finkelstein D, Eisenman Robert N, Baldwin K, Dyer Michael A (2015) Quantification of Retinogenesis in 3D cultures reveals epigenetic memory and higher efficiency in iPSCs derived from rod photoreceptors. Cell Stem Cell 17(1):101–115. doi:10.1016/j.stem.2015.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ajioka I, Martins RAP, Bayazitov IT, Donovan S, Johnson DA, Frase S, Cicero SA, Boyd K, Zakharenko SS, Dyer MA (2007) Differentiated horizontal interneurons clonally expand to form metastatic retinoblastoma in mice. Cell 131(2):378–390. doi:10.1016/j.cell.2007.09.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Ellisman MH, Verma IM (2012) Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338(6110):1080–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim J, Lengner CJ, Kirak O, Hanna J, Cassady JP, Lodato MA, Wu S, Faddah DA, Steine EJ, Gao Q, Fu D, Dawlaty M, Jaenisch R (2011) Reprogramming of postnatal neurons into induced pluripotent stem cells by defined factors. Stem Cells 29(6):992–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810–813

    Article  CAS  PubMed  Google Scholar 

  41. Wakayama T, Perry ACF, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394(6691):369–374

    Article  CAS  PubMed  Google Scholar 

  42. Eggan K, Baldwin K, Tackett M, Osborne J, Gogos J, Chess A, Axel R, Jaenisch R (2004) Mice cloned from olfactory sensory neurons. Nature 428(6978):44–49

    Article  CAS  PubMed  Google Scholar 

  43. Eggan K, Jaenisch R (2006) Generation of embryonic stem (ES) cell-derived embryos and mice by tetraploid–embryo complementation. Mammalian and avian Transgenesis—new approaches. Springer, Heidelberg

    Google Scholar 

  44. Hochedlinger K, Jaenisch R (2002) Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415(6875):1035–1038

    Article  CAS  PubMed  Google Scholar 

  45. Makino H, Yamazaki Y, Hirabayashi T, Kaneko R, Hamada S, Kawamura Y, Osada T, Yanagimachi R, Yagi T (2005) Mouse embryos and chimera cloned from neural cells in the postnatal cerebral cortex. Cloning Stem Cells 7(1):45–61

    Article  CAS  PubMed  Google Scholar 

  46. Nagy A, Gocza E, Diaz EM, Prideaux VR, Ivanyi E, Markkula M, Rossant J (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development 110(3):815–821

    CAS  PubMed  Google Scholar 

  47. Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci 90(18):8424–8428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tachibana M, Amato P, Sparman M, Gutierrez Nuria M, Tippner-Hedges R, Ma H, Kang E, Fulati A, Lee H-S, Sritanaudomchai H, Masterson K, Larson J, Eaton D, Sadler-Fredd K, Battaglia D, Lee D, Wu D, Jensen J, Patton P, Gokhale S, Stouffer Richard L, Wolf D, Mitalipov S (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153(6):1228–1238. doi:10.1016/j.cell.2013.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2(10):743–755

    Article  CAS  PubMed  Google Scholar 

  50. Madisen L, Zwingman TA, Sunkin SM, SW O, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140; http://www.nature.com/neuro/journal/v13/n1/suppinfo/nn.2467_S1.html

  51. Brewer GJ, Torricelli JR (2007) Isolation and culture of adult neurons and neurospheres. Nat Protoc 2(6):1490–1498

    Article  CAS  PubMed  Google Scholar 

  52. Kishigami S, Wakayama S, Van Thuan N, Ohta H, Mizutani E, Hikichi T, Bui H-T, Balbach S, Ogura A, Boiani M, Wakayama T (2006) Production of cloned mice by somatic cellnuclear transfer. Nat Protoc 1(1):125–138; http://www.nature.com/nprot/journal/v1/n1/suppinfo/nprot.2006.21_S1.html

  53. Eggan K, Jaenisch R (2006) Cloning the laboratory mouse by nuclear transfer. In: Pease S, Lois C (eds) Mammalian and Avian transgenesis—new approaches. Springer, Berlin, pp 69–96. doi:10.1007/978-3-540-28489-5_4

    Chapter  Google Scholar 

  54. Kishigami S, Mizutani E, Ohta H, Hikichi T, Thuan NV, Wakayama S, Bui H-T, Wakayama T (2006) Significant improvement of mouse cloning technique by treatment with trichostatin a after somatic nuclear transfer. Biochem Biophys Res Commun 340(1):183–189. doi:10.1016/j.bbrc.2005.11.164

    Article  CAS  PubMed  Google Scholar 

  55. Meissner A, Eminli S, Jaenisch R (2009) Derivation and manipulation of murine embryonic stem cells. In: Audet J, Stanford W (eds) Stem cells in regenerative medicine, Methods in molecular biology, vol 482. Humana Press, New York, pp 3–19. doi:10.1007/978-1-59745-060-7_1

    Chapter  Google Scholar 

  56. Tamm C, Pijuan Galitó S, Annerén C (2013) A comparative study of Protocols for mouse embryonic stem cell culturing. PLoS One 8(12):e81156. doi:10.1371/journal.pone.0081156

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chiang C, Layer RM, Faust GG, Lindberg MR, Rose DB, Garrison EP, Marth GT, Quinlan AR, Hall IM (2015) SpeedSeq: ultra-fast personal genome analysis and interpretation. Nat Methods 12:966–968. doi:10.1038/nmeth.3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P (2015) Sambamba: fast processing of NGS alignment formats. Bioinformatics 31:2032–2034. doi:10.1093/bioinformatics/btv098

  59. DePristo M, Banks E, Poplin R, Garimella K, Maguire J, Hartl C, Philippakis A, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell T, Kernytsky A, Sivachenko A, Cibulskis K, Gabriel S, Altshuler D, Daly M (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics 43:491–498. doi:10.1038/ng.806

  60. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, DePristo MA (2013) From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10–11.33. doi:10.1002/0471250953.bi1110s43

    Google Scholar 

  61. Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A, Agam A, Slater G, Goodson M, Furlotte NA, Eskin E, Nellåker C, Whitley H, Cleak J, Janowitz D, Hernandez-Pliego P, Edwards A, Belgard TG, Oliver PL, McIntyre RE, Bhomra A, Nicod J, Gan X, Yuan W, van der Weyden L, Steward CA, Balasubramaniam S, Stalker J, Mott R, Durbin R, Jackson IJ, Czechanski A, Assunção JAG, Donahue LR, Reinholdt LG, Payseur BA, Ponting CP, Birney E, Flint J, Adams DJ (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477:289–294. doi:10.1038/nature10413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, Gudjonsson SA, Sigurdsson A, Jonasdottir A, Jonasdottir A, Wong WSW, Sigurdsson G, Walters GB, Steinberg S, Helgason H, Thorleifsson G, Gudbjartsson DF, Helgason A, Magnusson OT, Thorsteinsdottir U, Stefansson K (2012) Rate of de novo mutations and the importance of father/’s age to disease risk. Nature 488:471–475. doi:10.1038/nature11396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Layer RM, Chiang C, Quinlan AR, Hall IM (2014) LUMPY: a probabilistic framework for structural variant discovery. Genome Biol 15:R84. doi:10.1186/gb-2014-15-6-r84

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hall IM, et. al., SV Typer. https://github.com/hall-lab/sv-pipeline

  65. Derrien T, Estellé J, Sola SM, Knowles DG, Raineri E, Guigó R, Ribeca P (2012) Fast computation and applications of genome Mappability. PLoS One 7:e30377. doi:10.1371/journal.pone.0030377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin K. Baldwin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hazen, J.L. et al. (2017). Using Cloning to Amplify Neuronal Genomes for Whole-Genome Sequencing and Comprehensive Mutation Detection and Validation. In: Frade, J., Gage, F. (eds) Genomic Mosaicism in Neurons and Other Cell Types. Neuromethods, vol 131. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7280-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7280-7_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7279-1

  • Online ISBN: 978-1-4939-7280-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics