Skip to main content

Computational Protein Design Through Grafting and Stabilization

  • Protocol
  • First Online:
Computational Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1529))

Abstract

Computational grafting of target residues onto existing protein scaffolds is a powerful method for the design of proteins with novel function. In the grafting method side chain mutations are introduced into a preexisting protein scaffold to recreate a target functional motif. The success of this approach relies on two primary criteria: (1) the availability of compatible structural scaffolds, and (2) the introduction of mutations that do not affect the protein structure or stability. To identify compatible structural motifs we use the Erebus webserver, to search the protein data bank (PDB) for user-defined structural scaffolds. To identify potential design mutations we use the Eris webserver, which accurately predicts changes in protein stability resulting from mutations. Mutations that increase the protein stability are more likely to maintain the protein structure and therefore produce the desired function. Together these tools provide effective methods for identifying existing templates and guiding further design experiments. The software tools for scaffold searching and design are available at http://dokhlab.org.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mandell DJ, Kortemme T (2009) Computer-aided design of functional protein interactions. Nat Chem Biol 5(11):797–807. doi:10.1038/nchembio.251

    Article  CAS  PubMed  Google Scholar 

  2. Martin L, Stricher F, Misse D, Sironi F, Pugniere M, Barthe P, Prado-Gotor R, Freulon I, Magne X, Roumestand C, Menez A, Lusso P, Veas F, Vita C (2003) Rational design of a CD4 mimic that inhibits HIV-1 entry and exposes cryptic neutralization epitopes. Nat Biotechnol 21(1):71–76. doi:10.1038/nbt768

    Article  CAS  PubMed  Google Scholar 

  3. Tinberg CE, Khare SD, Dou J, Doyle L, Nelson JW, Schena A, Jankowski W, Kalodimos CG, Johnsson K, Stoddard BL, Baker D (2013) Computational design of ligand-binding proteins with high affinity and selectivity. Nature 501(7466):212–216. doi:10.1038/nature12443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schulze H, Vorlova S, Villatte F, Bachmann TT, Schmid RD (2003) Design of acetylcholinesterases for biosensor applications. Biosens Bioelectron 18(2-3):201–209

    Article  CAS  PubMed  Google Scholar 

  5. Sia SK, Kim PS (2003) Protein grafting of an HIV-1-inhibiting epitope. Proc Natl Acad Sci U S A 100(17):9756–9761. doi:10.1073/pnas.1733910100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hao J, Serohijos AW, Newton G, Tassone G, Wang Z, Sgroi DC, Dokholyan NV, Basilion JP (2008) Identification and rational redesign of peptide ligands to CRIP1, a novel biomarker for cancers. PLoS Comput Biol 4(8), e1000138. doi:10.1371/journal.pcbi.1000138

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rothlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D (2008) Kemp elimination catalysts by computational enzyme design. Nature 453(7192):190–195. doi:10.1038/nature06879

    Article  PubMed  Google Scholar 

  8. Drakopoulou E, Zinn-Justin S, Guenneugues M, Gilqin B, Menez A, Vita C (1996) Changing the structural context of a functional beta-hairpin. Synthesis and characterization of a chimera containing the curaremimetic loop of a snake toxin in the scorpion alpha/beta scaffold. J Biol Chem 271(20):11979–11987

    Article  CAS  PubMed  Google Scholar 

  9. Azoitei ML, Correia BE, Ban YE, Carrico C, Kalyuzhniy O, Chen L, Schroeter A, Huang PS, McLellan JS, Kwong PD, Baker D, Strong RK, Schief WR (2011) Computation-guided backbone grafting of a discontinuous motif onto a protein scaffold. Science 334(6054):373–376. doi:10.1126/science.1209368

    Article  CAS  PubMed  Google Scholar 

  10. Hearst DP, Cohen FE (1994) GRAFTER: a computational aid for the design of novel proteins. Protein Eng 7(12):1411–1421

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Grigoryan G (2013) Mining tertiary structural motifs for assessment of designability. Methods Enzymol 523:21–40. doi:10.1016/B978-0-12-394292-0.00002-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shirvanyants D, Alexandrova AN, Dokholyan NV (2011) Rigid substructure search. Bioinformatics 27(9):1327–1329. doi:10.1093/bioinformatics/btr129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yin S, Ding F, Dokholyan NV (2007) Eris: an automated estimator of protein stability. Nat Methods 4(6):466–467. doi:10.1038/nmeth0607-466

    Article  CAS  PubMed  Google Scholar 

  14. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hooft RW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381(6580):272. doi:10.1038/381272a0

    Article  CAS  PubMed  Google Scholar 

  16. Ramachandran S, Kota P, Ding F, Dokholyan NV (2011) Automated minimization of steric clashes in protein structures. Proteins 79(1):261–270. doi:10.1002/prot.22879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ding F, Tsao D, Nie H, Dokholyan NV (2008) Ab initio folding of proteins with all-atom discrete molecular dynamics. Structure 16(7):1010–1018. doi:10.1016/j.str.2008.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dokholyan NV, Buldyrev SV, Stanley HE, Shakhnovich EI (1998) Discrete molecular dynamics studies of the folding of a protein-like model. Fold Des 3(6):577–587. doi:10.1016/S1359-0278(98)00072-8

    Article  CAS  PubMed  Google Scholar 

  19. Ding F, Dokholyan NV (2006) Emergence of protein fold families through rational design. PLoS Comput Biol 2(7), e85. doi:10.1371/journal.pcbi.0020085

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yin S, Ding F, Dokholyan NV (2007) Modeling backbone flexibility improves protein stability estimation. Structure 15(12):1567–1576. doi:10.1016/j.str.2007.09.024

    Article  CAS  PubMed  Google Scholar 

  21. The PyMOL Molecular Graphics System, Version 1.7.4 Schrödinger, LLC

    Google Scholar 

Download references

Acknowledgment

This work was supported by National Institutes of Health Awards R01GM080742 and R01AI102732.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay V. Dokholyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhu, C., Mowrey, D.D., Dokholyan, N.V. (2017). Computational Protein Design Through Grafting and Stabilization. In: Samish, I. (eds) Computational Protein Design. Methods in Molecular Biology, vol 1529. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6637-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6637-0_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6635-6

  • Online ISBN: 978-1-4939-6637-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics