Skip to main content

State-Dependent Transcranial Magnetic Stimulation (TMS) Protocols

  • Protocol
  • First Online:
Transcranial Magnetic Stimulation

Part of the book series: Neuromethods ((NM,volume 89))

Abstract

In this chapter we describe a novel approach which enhances the functional resolution of transcranial magnetic stimulation (TMS) to a level that allows for differential stimulation of functionally distinct neuronal populations within a cortical area. It is based on the well-known principle of state-dependency: a phenomenon whereby the response of a system to an external stimulus is affected not only by the properties of that stimulus but also by the internal state of the system. With regard to TMS, the neural impact of an applied pulse is determined not only by the stimulation parameters but also by the initial activation state of the affected neurons; therefore, neurons within a cortical area will be differentially affected by TMS if their initial activation states at the time of stimulation are dissimilar. The basic idea in state-dependent TMS is to control this initial state/TMS interaction. By selectively increasing the susceptibility of a specific neuronal population via adaptation and priming, one can differentially stimulate this population from other neurons in the area. The main benefit of state-dependent TMS is that it allows TMS research to move beyond questions of β€œIs region X necessary for task Y” and investigate the functional neuronal properties within a targeted area. So far, this approach has been successfully used to investigate neuronal representations associated with a wide range of cognitive functions such as numerical cognition, action observation, and conceptual knowledge, and it may hold much promise for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Silvanto J, Pascual-Leone A (2008) State-dependency of transcranial magnetic stimulation. Brain Topogr 21:1–10

    ArticleΒ  PubMed CentralΒ  PubMedΒ  Google ScholarΒ 

  2. Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11:641–649

    CASΒ  PubMedΒ  Google ScholarΒ 

  3. Lamme VA, SupΓ¨r H, Landman R, Roelfsema PR, Spekreijse H (2000) The role of primary visual cortex (V1) in visual awareness. Vision Res 40:1507–1521

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  4. Maunsell JH, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49:1127–1147

    CASΒ  PubMedΒ  Google ScholarΒ 

  5. Malach R, Reppas J, Benson R, Kwong K, Jiang H, Kennedy W, Ledden P, Brady T, Rosen B, Tootell R (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci U S A 92:8135–8139

    ArticleΒ  CASΒ  PubMed CentralΒ  PubMedΒ  Google ScholarΒ 

  6. Grill-Spector K, Kourtzi Z, Kanwisher N (2001) The lateral occipital complex and its role in object recognition. Vision Res 41(10–11):1409–1422

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  7. Rolls ET (2000) Functions of the primate temporal lobe cortical visual areas in invariant visual object and face recognition. Neuron 27:205–218

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  8. Walsh V, Pascual-Leone A (2003) Transcranial magnetic stimulation: a neurochronometrics of mind. MIT Press, Cambridge

    Google ScholarΒ 

  9. Amassian VE, Cracco RQ, Maccabee PJ, Cracco JB, Rudell A, Eberle L (1989) Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol 74:458–462

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  10. Silvanto J, Cowey A, Lavie N, Walsh V (2005) Striate cortex V1 activity gates awareness of motion. Nat Neurosci 8:143–144

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  11. Grill-Spector K, Henson R, Martin A (2006) Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn Sci 10:14–23

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  12. Gibson J, Radner M (1937) Adaptation, after-effect and contrast in the perception of tilted lines. J Exp Psychol 12:453–467

    ArticleΒ  Google ScholarΒ 

  13. Mather G, Verstraten F, Anstis S (1998) The motion aftereffect: a modern perspective. Oxford University Press, Oxford

    Google ScholarΒ 

  14. Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24:187–203

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  15. Grill-Spector K, Malach R (2001) fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol 107:293–321

    ArticleΒ  CASΒ  Google ScholarΒ 

  16. Silvanto J, Muggleton NG (2008) New light through old windows: moving beyond the β€œvirtual lesion” approach to transcranial magnetic stimulation. Neuroimage 39:549–552

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  17. Siebner HR, Lang N, Rizzo V, Nitsche MA, Paulus W, Lemon RN et al (2004) Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 24:3379–3385

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  18. Silvanto J, Cattaneo Z, Battelli L, Pascual-Leone A (2008) Baseline cortical excitability determines whether TMS disrupts or facilitates behavior. J Neurophysiol 99:2725–2730

    ArticleΒ  PubMed CentralΒ  PubMedΒ  Google ScholarΒ 

  19. Silvanto J, Muggleton NG, Cowey A, Walsh V (2007) Neural adaptation reveals state-dependent effects of transcranial magnetic stimulation. Eur J Neurosci 25:1874–1881

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  20. Engel SA (2005) Adaptation of oriented and unoriented color-selective neurons in human visual areas. Neuron 45:613–623

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  21. Cattaneo Z, Silvanto J (2008) Investigating visual motion perception using the TMS-adaptation paradigm. Neuroreport 19:1423–1427

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  22. Cattaneo Z, Silvanto J (2008) Time course of the state-dependent effect of transcranial magnetic stimulation motion in the TMS-adaptation paradigm. Neurosci Lett 443: 82–85

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  23. Cattaneo Z, Devlin JT, Vecchi T, Silvanto J (2009) Dissociable neural representations of grammatical gender in Broca’s area investigated by the combination of satiation and TMS. Neuroimage 47:700–704

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  24. Smith L, Klein R (1990) Evidence for semantic satiation: repeating a category slows subsequent semantic processing. J Exp Psychol Learn Mem Cogn 16:852–861

    ArticleΒ  Google ScholarΒ 

  25. Smith LC (1984) Semantic satiation affects category membership decision time but not lexical priming. Mem Cogn 12:483–488

    ArticleΒ  CASΒ  Google ScholarΒ 

  26. ThΓ©oret H, Kobayashi M, Ganis G, Di Capua P, Pascual-Leone A (2002) Repetitive transcranial magnetic stimulation of human area MT/V5 disrupts storage of the motion aftereffect. Neuropsychologia 40:2280–2287

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  27. Cattaneo Z, Devlin JT, Salvini F, Vecchi T, Silvanto J (2010) The causal role of category-specific neuronal representations in the left ventral premotor cortex (PMv) in semantic processing. Neuroimage 49:2728–2734

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  28. Cohen Kadosh R, Muggleton N, Silvanto J, Walsh V (2010) Double dissociation of format-dependent and number-specific neurons in human parietal cortex. Cereb Cortex 209:2166–2171

    ArticleΒ  Google ScholarΒ 

  29. Maljkovic V, Nakayama K (1994) Priming of pop-out: I. Role of features. Mem Cognit 22:657–672

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  30. Maljkovic V, Nakayama K (1996) Priming of pop-out: II. The role of position. Percept Psychophys 58:977–991

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  31. Campana G, Cowey A, Walsh V (2002) Priming of motion direction and area V5/MT: a test of perceptual memory. Cereb Cortex 12:663–669

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  32. Magnussen S, Greenlee MW (1999) The psychophysics of perceptual memory. Psychol Res 62:81–92

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  33. Cattaneo Z, Rota F, Walsh V, Vecchi T, Silvanto J (2009) TMS-adaptation reveals abstract letter selectivity in the left posterior parietal cortex (PPC). Cereb Cortex 19:2321–2325

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  34. Cattaneo L, Sandrini M, Schwarzbach J (2010) State-dependent TMS reveals a hierarchical representation of observed acts in the temporal, parietal, and premotor cortices. Cereb Cortex 209:2252–2258

    ArticleΒ  Google ScholarΒ 

  35. Silvanto J, Schwarzkopf DS, Gilaie-Dotan S, Rees G (2010) Differing causal roles for lateral occipital cortex and occipital face area in invariant shape recognition. Eur J Neurosci 32:165–171

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  36. Mattavelli G, Cattaneo Z, Papagno C (2011) Transcranial magnetic stimulation of medial prefrontal cortex modulates face expressions processing in a priming task. Neuropsychologia 49(5):992–998

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  37. Pavan A, Campana G, Maniglia M, Casco C (2010) The role of high-level visual areas in short- and longer-lasting forms of neural plasticity. Neuropsychologia 48:3069–3079

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  38. Voss JL, Schendan HE, Paller KA (2010) Finding meaning in novel geometric shapes influences electrophysiological correlates of repetition and dissociates perceptual and conceptual priming. Neuroimage 49:2879–2889

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  39. Miniussi C, Ruzzoli M, Walsh V (2010) The mechanism of transcranial magnetic stimulation in cognition. Cortex 46(1):128–130

    Google ScholarΒ 

  40. Kitajo K, Nozaki D, Ward LM, Yamamoto Y (2003) Behavioral stochastic resonance within the human brain. Phys Rev Lett 90:218103

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  41. Lugo E, Doti R, Faubert J (2008) Ubiquitous crossmodal Stochastic Resonance in humans: auditory noise facilitates tactile, visual and proprioceptive sensations. PLoS ONE 3:e2860

    ArticleΒ  PubMed CentralΒ  PubMedΒ  Google ScholarΒ 

  42. Sasaki H, Sakane S, Ishida T, Todorokihara M, Kitamura T, Aoki R (2008) Suprathreshold stochastic resonance in visual signal detection. Behav Brain Res 193:152–155

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  43. Simonotto E, Riani M, Seife C, Roberts M, Twitty J, Moss F (1997) Visual perception of stochastic resonance. Phys Rev Lett 78:1186

    ArticleΒ  CASΒ  Google ScholarΒ 

  44. Schwarzkopf DS, Silvanto J, Rees G (2011) Stochastic resonance effects reveal the neural mechanisms of transcranial magnetic stimulation. J Neurosci 31(9):3143–3147

    ArticleΒ  CASΒ  PubMed CentralΒ  PubMedΒ  Google ScholarΒ 

  45. Ruzzoli M, Marzi CA, Miniussi C (2010) The neural mechanisms of the effects of transcranial magnetic stimulation on perception. J Neurophysiol 103(6):2982–2989

    Google ScholarΒ 

  46. Ruzzoli M, Abrahamyan A, Clifford CW, Marzi CA, Miniussi C, Harris JA (2011) The effect of TMS on visual motion sensitivity: an increase in neural noise or a decrease in signal strength? J Neurophysiol (1):138–143

    Google ScholarΒ 

  47. Gilaie-Dotan S, Nir Y, Malach R (2008) Regionally-specific adaptation dynamics in human object areas. Neuroimage 39:1926–1937

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  48. Adolphs R, Damasio H, Tranel D, Cooper G, Damasio AR (2000) A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. J Neurosci 20:2683–2690

    CASΒ  PubMedΒ  Google ScholarΒ 

  49. Heberlein AS, Padon AA, Gillihan SJ, Farah MJ, Fellows LK (2008) Ventromedial frontal lobe plays a critical role in facial emotion recognition. J Cogn Neurosci 20:721–733

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  50. Mah LWY, Arnold MC, Grafman J (2005) Deficits in social knowledge following damage to ventromedial prefrontal cortex. J Neuro-psychiatry Clin Neurosci 17:66–74

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  51. Pitcher D, Garrido L, Walsh V, Duchaine C (2008) Transcranial Magnetic Stimulation disrupts the perception and embodiment of facial expression. J Neurosci 28:8929–8933

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  52. Piazza M, Pinel P, Le Bihan D, Dehaene S (2007) A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron 53:293–305

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  53. Dehaene S, Dehaene-Lambertz G, Cohen L (1998) Abstract representations of numbers in the animal and human brain. Trends Neurosci 21:355–361

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  54. Grafton ST, Hamilton AF (2007) Evidence for a distributed hierarchy of action representation in the brain. Hum Motor Sci 26:590–616

    ArticleΒ  Google ScholarΒ 

  55. Cattaneo L, Rizzolatti G (2009) The mirror neuron system. Arch Neurol 66:557–560

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  56. Chao LL, Haxby JV, Martin A (1999) Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nat Neurosci 2:913–919

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  57. Devlin JT, Rushworth MF, Matthews PM (2005) Category-related activation for written words in the posterior fusiform is task specific. Neuropsychologia 43:69–74

    ArticleΒ  PubMed CentralΒ  PubMedΒ  Google ScholarΒ 

  58. Damasio H, Grabowski TJ, Tranel D, Hichwa RD, Damasio AR (1996) A neural basis for lexical retrieval. Nature 380:499–505

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  59. Martin A, Wiggs CL, Ungerleider LG, Haxby JV (1996) Neural correlates of category specific knowledge. Nature 379:649–652

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  60. Baddeley A, Salame P (1986) The unattended speech effect: perception or memory? J Exp Psychol Learn Mem Cogn 12:525–529

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  61. Cornoldi C, Vecchi T (2003) Visuo-spatial working memory and individual differences. Psychology Press, Hove

    Google ScholarΒ 

  62. Cattaneo Z, Vecchi T, Pascual-Leone A, Silvanto J (2009) Contrasting early visual cortical activation states causally involved in visual imagery and short-term memory. Eur J Neurosci 30(7):1393–1400

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  63. Sparing R, Mottaghy FM, Ganis G, Thompson WL, TΓΆpper R, Kosslyn SM, Pascual-Leone A (2002) Visual cortex excitability increases during visual mental imageryβ€”a TMS study in healthy human subjects. Brain Res 938:s92–97

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  64. Kosslyn SM, Ganis G, Thompson WL (2001) Neural foundations of imagery. Nat Rev Neurosci 2:635–642

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  65. Sack AT, Jacobs C, De Martino F, Staeren N, Goebel R, Formisano E (2008) Dynamic premotor-to-parietal interactions during spatial imagery. J Neurosci 28:8417–8429

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  66. Sack AT, Sperling JM, Prvulovic D, Formisano E, Goebel R, Di Salle F, Dierks T, Linden DE (2002) Tracking the mind’s image in the brain II: transcranial magnetic stimulation reveals parietal asymmetry in visuospatial imagery. Neuron 35:195–204

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Silvanto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Β© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Silvanto, J., Cattaneo, Z. (2014). State-Dependent Transcranial Magnetic Stimulation (TMS) Protocols. In: Rotenberg, A., Horvath, J., Pascual-Leone, A. (eds) Transcranial Magnetic Stimulation. Neuromethods, vol 89. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0879-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0879-0_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0878-3

  • Online ISBN: 978-1-4939-0879-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics