Skip to main content

Analysis of Surface Expression of NMDAR Subunits in Primary Hippocampal Neurons

  • Protocol
  • First Online:
NMDA Receptors

Abstract

The expression and activity of ionotropic glutamate receptors control signal transduction at the excitatory synapses in the CNS. The NMDAR comprises two obligatory GluN1 subunits and two GluN2 or GluN3 subunits in different combinations. Each GluN subunit consists of four domains: the extracellular amino-terminal and agonist-binding domains, the transmembrane domain, and the intracellular C-terminal domain (CTD). The CTD interaction with various classes of intracellular proteins is critical for trafficking and synaptic localization of NMDARs. Amino acid mutations or the inclusion of premature stop codons in the CTD could contribute to the emergence of neurodevelopmental and neuropsychiatric disorders. Here, we describe the method of preparing primary hippocampal neurons and lentiviral particles expressing GluN subunits that can be used as a model to study cell surface expression and synaptic localization of NMDARs. We also show a simple method of fluorescence immunostaining of eGFP-tagged GluN2 subunits and subsequent microscopy technique and image analysis to study the effects of disease-associated mutations in the CTDs of GluN2A and GluN2B subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nadler JV (2012) Plasticity of glutamate synaptic mechanisms. In: Noebels JL, Avoli M, Rogawski MA et al (eds) Jasper’s basic mech epilepsies [Internet], 4th edn. National Center for Biotechnology Information, Bethesda. PMID: 22787612

    Google Scholar 

  2. Vyklicky V, Korinek M, Smejkalova T et al (2014) Structure, function, and pharmacology of NMDA receptor channels. Physiol Res 63(Suppl 1):S191–S203. https://doi.org/10.33549/physiolres.932678

    Article  CAS  PubMed  Google Scholar 

  3. Hansen KB, Wollmuth LP, Bowie D et al (2021) Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol Rev 73:298–487. https://doi.org/10.1124/PHARMREV.120.000131

    Article  PubMed  PubMed Central  Google Scholar 

  4. Andersson O, Stenqvist A, Attersand A, Von Euler G (2001) Nucleotide sequence, genomic organization, and chromosomal localization of genes encoding the human NMDA receptor subunits NR3A and NR3B. Genomics 78:178–184. https://doi.org/10.1006/geno.2001.6666

    Article  CAS  PubMed  Google Scholar 

  5. Goebel DJ, Poosch MS (1999) NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1 Com, NR2A, NR2B, NR2C. Mol Brain Res 69:164–170. https://doi.org/10.1016/s0169-328x(99)00100-x

    Article  CAS  PubMed  Google Scholar 

  6. Coultrap SJ, Nixon KM, Alvestad RM et al (2005) Differential expression of NMDA receptor subunits and splice variants among the CA1, CA3 and dentate gyrus of the adult rat. Mol Brain Res 135:104–111. https://doi.org/10.1016/j.molbrainres.2004.12.005

    Article  CAS  PubMed  Google Scholar 

  7. Pandis C, Sotiriou E, Kouvaras E (2006) Differential expression of NMDA and AMPA receptor subunits in rat dorsal and venral hippocampus. Neuroscience 140:163–175. https://doi.org/10.1016/j.neuroscience.2006.02.003

    Article  CAS  PubMed  Google Scholar 

  8. Monyer H, Burnashev N, Laurie DJ et al (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540. https://doi.org/10.1016/0896-6273(94)90210-0

  9. Sanz-Clemente A, Nicoll RA, Roche KW (2013) Diversity in NMDA receptor composition. Neuroscience 19:62–75. https://doi.org/10.1177/1073858411435129

    Article  CAS  Google Scholar 

  10. Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8:413–426. https://doi.org/10.1038/nrn2153

    Article  CAS  PubMed  Google Scholar 

  11. Sans N, Prybylowski K, Petralia RS et al (2003) NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex. Nat Cell Biol 5:520–530. https://doi.org/10.1038/ncb990

    Article  CAS  PubMed  Google Scholar 

  12. Horak M, Chang K, Wenthold RJ (2008) Masking of the endoplasmic reticulum retention signals during assembly of the NMDA receptor. J Neurosci 28:3500–3509. https://doi.org/10.1523/JNEUROSCI.5239-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Horak M, Wenthold RJ, Horak M, Wenthold RJ (2009) Different roles of C-terminal cassettes in the trafficking of full-length NR1 subunits to the cell surface. J Biol Chem 284(15):9683–9691. https://doi.org/10.1074/jbc.M807050200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Standley S, Petralia RS, Gravell M et al (2012) Trafficking of the NMDAR2B receptor subunit distal cytoplasmic tail from endoplasmic reticulum to the synapse. PLoS One 7(6):e39585. https://doi.org/10.1371/journal.pone.0039585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jeyifous O, Waites CL, Specht CG et al (2009) SAP97 and CASK mediate sorting of NMDA receptors through a previously unknown secretory pathway. Nat Neurosci 12:1011–1019. https://doi.org/10.1038/nn.2362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fan X, Jin WY, Wang YT (2014) The NMDA receptor complex: a multifunctional machine at the glutamatergic synapse. Front Cell Neurosci 8:1–9. https://doi.org/10.3389/fncel.2014.00160

    Article  CAS  Google Scholar 

  17. Ishchenko Y, Carrizales MG, Koleske AJ (2021) Neuropharmacology regulation of the NMDA receptor by its cytoplasmic domains: (how) is the tail wagging the dog? Neuropharmacology 195:108634. https://doi.org/10.1016/j.neuropharm.2021.108634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roche KW, Standley S, Mccallum J et al (2001) Molecular determinants of NMDA receptor internalization. Nat Neurosci 4:794–802. https://doi.org/10.1038/90498

    Article  CAS  PubMed  Google Scholar 

  19. Rossi P, Sola E, Taglietti V et al (2002) NMDA receptor 2 (NR2) C-terminal control of NR open probability regulates synaptic transmission and plasticity at a cerebellar synapse. J Neurosci 22:9687–9697. https://doi.org/10.1523/JNEUROSCI.22-22-09687.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stanic J, Carta M, Eberini I et al (2015) Rabphilin 3A retains NMDA receptors at synaptic sites through interaction with GluN2A/PSD-95 complex. Nat Commun 6:1–16. https://doi.org/10.1038/ncomms10181

    Article  CAS  Google Scholar 

  21. Lin Y, Jover-Mengual T, Wong J et al (2006) PSD-95 and PKC converge in regulating NMDA receptor trafficking and gating. Proc Natl Acad Sci USA 103:19902–19907. https://doi.org/10.1073/pnas.0609924104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maki BA, Aman TK, Amico-Ruvio SA et al (2012) C-terminal domains of N-methyl-D-aspartic acid receptor modulate unitary channel conductance and gating. J Biol Chem 287:36071–36080. https://doi.org/10.1074/jbc.M112.390013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lemke JR, Lal D, Reinthaler EM et al (2013) Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet 45:1067–1072. https://doi.org/10.1038/ng.2728

    Article  CAS  PubMed  Google Scholar 

  24. Platzer K, Yuan H, Schütz H et al (2017) GRIN2B encephalopathy: novel findings on phenotype, variant clustering, functional consequences and treatment aspects. J Med Genet 54:460–470. https://doi.org/10.1136/jmedgenet-2016-104509

    Article  CAS  PubMed  Google Scholar 

  25. Tarabeux J, Kebir O, Gauthier J et al (2011) Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia. Transl Psychiatry 1:e55–e55. https://doi.org/10.1038/tp.2011.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burnashev N, Szepetowski P (2015) NMDA receptor subunit mutations in neurodevelopmental disorders. Curr Opin Pharmacol 20:73–82. https://doi.org/10.1016/j.coph.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  27. Warnet XL, Bakke Krog H, Sevillano-Quispe OG et al (2021) The C-terminal domains of the NMDA receptor: how intrinsically disordered tails affect signalling, plasticity and disease. Eur J Neurosci 54(8):6713–9739. https://doi.org/10.1111/ejn.14842

  28. García-Recio A, Santos-Gómez A, Soto D et al (2021) GRIN database: a unified and manually curated repertoire of GRIN variants. Hum Mutat 42:8–18. https://doi.org/10.1002/humu.24141

    Article  CAS  PubMed  Google Scholar 

  29. Swanger SA, Chen W, Wells G et al (2016) Mechanistic insight into NMDA receptor dysregulation by rare variants in the GluN2A and GluN2B agonist binding domains. Am J Hum Genet 1–20. https://doi.org/10.1016/j.ajhg.2016.10.002

  30. Vyklicky V, Krausova B, Cerny J, Ladislav M (2018) Surface expression, function, and pharmacology of disease-associated mutations in the membrane domain of the human. Front Cell Neurosci 11:1–20. https://doi.org/10.3389/fnmol.2018.00110

    Article  CAS  Google Scholar 

  31. Lichnerova K, Kaniakova M, Park SP et al (2015) Two N-glycosylation sites in the GluN1 subunit are essential for releasing N-methyl-D-aspartate (NMDA) receptors from the endoplasmic reticulum. J Biol Chem 290:18379–18390. https://doi.org/10.1074/jbc.M115.656546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Skrenkova K, Song J, Kortus S et al (2020) The pathogenic S688Y mutation in the ligand – binding domain of the GluN1 subunit regulates the properties of NMDA receptors. Sci Rep 1–15. https://doi.org/10.1038/s41598-020-75646-w

  33. Kolcheva M, Ladislav M, Netolicky J et al (2023) Neuropharmacology the pathogenic N650K variant in the GluN1 subunit regulates the trafficking, conductance, and pharmacological properties of NMDA receptors. Neuropharmacology 222:109297. https://doi.org/10.1016/j.neuropharm.2022.109297

    Article  CAS  PubMed  Google Scholar 

  34. Horak M, Suh YH (2016) Chapter 3: counting NMDA receptors at the cell surface. In: Ionotropic glutamate receptor technologies, Neuromethods, vol 106, pp 31–44. https://doi.org/10.1007/978-1-4939-2812-5

    Chapter  Google Scholar 

  35. Mota Vieira M, Nguyen TA, Wu K et al (2020) An epilepsy-associated GRIN2A rare variant disrupts CaMKIIα phosphorylation of GluN2A and NMDA receptor trafficking. Cell Rep 32:108104. https://doi.org/10.1016/j.celrep.2020.108104

    Article  CAS  PubMed  Google Scholar 

  36. Parr-Brownlie LC, Bosch-Bouju C, Schoderboeck L, Sizemore RJ, Abraham WC, Hughes SM (2015) Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms. Front Mol Biosci 8:1–12. https://doi.org/10.3389/fnmol.2015.00014

    Article  Google Scholar 

  37. Vicario-Abejón C (2004) Long-term culture of hippocampal neurons. Curr Protoc Neurosci 26:3.2.1–3.2.13. https://doi.org/10.1002/0471142301.ns0302s26

    Article  Google Scholar 

  38. García-Nafría J, Watson JF, Greger IH (2016) IVA cloning: a single-tube universal cloning system exploiting bacterial In Vivo Assembly. Sci Rep 6:1–12. https://doi.org/10.1038/srep27459

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work on this chapter was supported by the MEYS CR: Program LT – INTER-EXCELLENCE LTAUSA19122 (AB), GACR 23-04922S (LV), TACR TN02000109, Research Project of the CAS CR (RVO: 67985823), and GAUK 376221 (VK). Supported also by project num. LX22NPO5107 (MEYS CR): Financed by EU – Next Generation EU (MH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ales Balik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kuchtiak, V., Smejkalova, T., Horak, M., Vyklicky, L., Balik, A. (2024). Analysis of Surface Expression of NMDAR Subunits in Primary Hippocampal Neurons. In: Burnashev, N., Szepetowski, P. (eds) NMDA Receptors. Methods in Molecular Biology, vol 2799. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3830-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3830-9_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3829-3

  • Online ISBN: 978-1-0716-3830-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics