Skip to main content

Application of Deep Learning for Studying NMDA Receptors

  • Protocol
  • First Online:
NMDA Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2799))

  • 302 Accesses

Abstract

Artificial intelligence underwent remarkable advancement in the past decade, revolutionizing our way of thinking and unlocking unprecedented opportunities across various fields, including drug development. The emergence of large pretrained models, such as ChatGPT, has even begun to demonstrate human-level performance in certain tasks.

However, the difficulties of deploying and utilizing AI and pretrained model for nonexpert limited its practical use. To overcome this challenge, here we presented three highly accessible online tools based on a large pretrained model for chemistry, the Uni-Mol, for drug development against CNS diseases, including those targeting NMDA receptor: the blood–brain barrier (BBB) permeability prediction, the quantitative structure–activity relationship (QSAR) analysis system, and a versatile interface of the AI-based molecule generation model named VD-gen. We believe that these resources will effectively bridge the gap between cutting-edge AI technology and NMDAR experts, facilitating rapid and rational drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kadry H, Noorani B, Cucullo L (2020) A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17(1):69. https://doi.org/10.1186/s12987-020-00230-3

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shaker B, Yu M-S, Song JS, Ahn S, Ryu JY, Oh K-S, Na D (2020) LightBBB: computational prediction model of blood–brain-barrier penetration based on LightGBM. Bioinformatics 37(8):1135–1139. https://doi.org/10.1093/bioinformatics/btaa918

    Article  CAS  Google Scholar 

  3. Singh M, Divakaran R, Konda LSK, Kristam R (2020) A classification model for blood brain barrier penetration. J Mol Graph Model 96:107516. https://doi.org/10.1016/j.jmgm.2019.107516

    Article  CAS  PubMed  Google Scholar 

  4. Liu L, Zhang L, Feng H, Li S, Liu M, Zhao J, Liu H (2021) Prediction of the blood–brain barrier (BBB) permeability of chemicals based on machine-learning and ensemble methods. Chem Res Toxicol 34(6):1456–1467. https://doi.org/10.1021/acs.chemrestox.0c00343

    Article  CAS  PubMed  Google Scholar 

  5. Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, Consonni V, Kuz’min VE, Cramer R, Benigni R, Yang C, Rathman J, Terfloth L, Gasteiger J, Richard A, Tropsha A (2014) QSAR modeling: where have you been? Where are you going to? J Med Chem 57(12):4977–5010. https://doi.org/10.1021/jm4004285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inf 29(6–7):476–488. https://doi.org/10.1002/minf.201000061

    Article  CAS  Google Scholar 

  7. Leelananda SP, Lindert S (2016) Computational methods in drug discovery. Beilstein J Org Chem 12:2694–2718. https://doi.org/10.3762/bjoc.12.267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bilodeau C, Jin W, Jaakkola T, Barzilay R, Jensen KF (2022) Generative models for molecular discovery: recent advances and challenges. Wiley Interdiscip Rev: Comput Mol Sci 12(5):e1608. https://doi.org/10.1002/wcms.1608

    Article  Google Scholar 

  9. Zhang D, Bi H, Dai F-Z, Jiang W, Zhang L, Wang H (2022) DPA-1: pretraining of attention-based deep potential model for molecular simulation. arXiv preprint arXiv:220808236

    Google Scholar 

  10. Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, Smetanin N, Verkuil R, Kabeli O, Shmueli Y, dos Santos Costa A, Fazel-Zarandi M, Sercu T, Candido S, Rives A (2023) Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637):1123–1130. https://doi.org/10.1126/science.ade2574

    Article  CAS  PubMed  Google Scholar 

  11. Zhou G, Gao Z, Ding Q, Zheng H, Xu H, Wei Z, Zhang L, Guolin Ke G (2023) Uni-Mol: a universal 3D molecular representation learning framework. Published as a conference paper at the Eleventh International Conference on Learning Representations (ICLR). https://openreview.net/pdf?id=6K2RM6wVqKu

  12. Lu S, Yao L, Chen X, Zheng H, He D, Ke G (2023) 3D molecular generation via virtual dynamics. arXiv preprint arXiv:230205847

    Google Scholar 

  13. Wu Z, Ramsundar B, Feinberg Evan N, Gomes J, Geniesse C, Pappu AS, Leswing K, Pande V (2018) MoleculeNet: a benchmark for molecular machine learning. Chem Sci 9(2):513–530. https://doi.org/10.1039/C7SC02664A

    Article  CAS  PubMed  Google Scholar 

  14. Bacilieri M, Varano F, Deflorian F, Marini M, Catarzi D, Colotta V, Filacchioni G, Galli A, Costagli C, Kaseda C, Moro S (2007) Tandem 3D-QSARs approach as a valuable tool to predict binding affinity data: design of new Gly/NMDA receptor antagonists as a key study. J Chem Inf Model 47(5):1913–1922. https://doi.org/10.1021/ci7001846

    Article  CAS  PubMed  Google Scholar 

  15. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Zhenfeng Deng and Ruichu Gu contributed equally to this work. We would like to specially thank Guolin Ke, Zhifeng Gao, Shuqi Lu, and many other developers of Uni-Mol and VD-gen. Financial supports are gratefully acknowledged for the STI2030 Major Projects (2022ZD0212700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Deng, Z., Gu, R., Wen, H. (2024). Application of Deep Learning for Studying NMDA Receptors. In: Burnashev, N., Szepetowski, P. (eds) NMDA Receptors. Methods in Molecular Biology, vol 2799. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3830-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3830-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3829-3

  • Online ISBN: 978-1-0716-3830-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics