Skip to main content

Behavioral Assays Dissecting NMDA Receptor Function in Zebrafish

  • Protocol
  • First Online:
NMDA Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2799))

  • 324 Accesses

Abstract

Zebrafish are a powerful system to study brain development and to dissect the activity of complex circuits. One advantage is that they display complex behaviors, including prey capture, learning, responses to photic and acoustic stimuli, and social interaction (Dreosti et al., Front Neural Circuits 9:39, 2015; Bruckner et al., PLoS Biol 20:e3001838, 2022; Zoodsma et al., Mol Autism 13:38, 2022) that can be probed to assess brain function. Many of these behaviors are easily assayed at early larval stages, offering a noninvasive and high-throughput readout of nervous system function. Additionally, larval zebrafish readily uptake small molecules dissolved in water making them ideal for behavioral-based drug screens. Together, larval zebrafish and their behavioral repertoire offer a means to rapidly dissect brain circuitry and can serve as a template for high-throughput small molecule screens.

NMDA receptor subunits are highly conserved in zebrafish compared to mammals (Zoodsma et al., Mol Autism 13:38, 2022; Cox et al., Dev Dyn 234:756–766, 2005; Zoodsma et al., J Neurosci 40:3631–3645, 2020). High amino acid and domain structure homology between humans and zebrafish underlie conserved functional similarities. Here we describe a set of behavioral assays that are useful to study the NMDA receptor activity in brain function.

Howard I. Sirotkin and Lonnie P. Wollmuth are co-senior authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kinkhabwala A, Riley M, Koyama M, Monen J et al (2011) A structural and functional ground plan for neurons in the hindbrain of zebrafish. Proc Natl Acad Sci USA 108:1164–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yu M, Xi Y, Pollack J, Debiais-Thibaud M et al (2011) Activity of dlx5a/dlx6a regulatory elements during zebrafish GABAergic neuron development. Int J Dev Neurosci 29:681–691

    Article  CAS  PubMed  Google Scholar 

  3. Mumm JS, Williams PR, Godinho L, Koerber A et al (2006) In vivo imaging reveals dendritic targeting of laminated afferents by zebrafish retinal ganglion cells. Neuron 52:609–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vladimirov N, Mu Y, Kawashima T, Bennett DV et al (2014) Light-sheet functional imaging in fictively behaving zebrafish. Nat Methods 11:883–884

    Article  CAS  PubMed  Google Scholar 

  5. Pozo-Morales M, Garteizgogeascoa I, Perazzolo C, So J et al (2023) In vivo imaging of calcium dynamics in zebrafish hepatocytes. Hepatology 77:789–801

    Article  PubMed  Google Scholar 

  6. Hansen KB, Wollmuth LP, Bowie D, Furukawa H et al (2021) Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol Rev 73:298–487

    Article  PubMed  PubMed Central  Google Scholar 

  7. Amores A, Force A, Yan YL, Joly L et al (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714

    Article  CAS  PubMed  Google Scholar 

  8. Cox JA, Kucenas S, Voigt MM (2005) Molecular characterization and embryonic expression of the family of N-methyl-D-aspartate receptor subunit genes in the zebrafish. Dev Dyn 234:756–766

    Article  CAS  PubMed  Google Scholar 

  9. Zoodsma JD, Keegan EJ, Moody GR, Bhandiwad AA et al (2022) Disruption of grin2B, an ASD-associated gene, produces social deficits in zebrafish. Mol Autism 13:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zoodsma JD, Chan K, Bhandiwad AA, Golann DR et al (2020) A model to study NMDA receptors in early nervous system development. J Neurosci 40:3631–3645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burnashev N, Szepetowski P (2015) NMDA receptor subunit mutations in neurodevelopmental disorders. Curr Opin Pharmacol 20:73–82

    Article  CAS  PubMed  Google Scholar 

  12. XiangWei W, Jiang Y, Yuan H (2018) De novo mutations and rare variants occurring in NMDA receptors. Curr Opin Physio 2:27–35

    Article  Google Scholar 

  13. Xu XX, Luo JH (2018) Mutations of N-methyl-D-aspartate receptor subunits in epilepsy. Neurosci Bull 34:549–565

    Article  CAS  PubMed  Google Scholar 

  14. Garcia-Recio A, Santos-Gomez A, Soto D, Julia-Palacios N et al (2021) GRIN database: a unified and manually curated repertoire of GRIN variants. Hum Mutat 42:8–18

    Article  CAS  PubMed  Google Scholar 

  15. Geisheker MR, Heymann G, Wang T, Coe BP et al (2017) Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains. Nat Neurosci 20:1043–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Amin JB, Moody GR, Wollmuth LP (2021) From bedside-to-bench: what disease-associated variants are teaching us about the NMDA receptor. J Physiol 599:397–416

    Article  CAS  PubMed  Google Scholar 

  17. Ha S, Sohn IJ, Kim N, Sim HJ et al (2015) Characteristics of brains in autism spectrum disorder: structure, function and connectivity across the lifespan. Exp Neurobiol 24:273–284

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pastorino GMG, Operto FF, Padovano C, Vivenzio V et al (2021) Social cognition in neurodevelopmental disorders and epilepsy. Front Neurol 12:658823

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sison M, Gerlai R (2011) Behavioral performance altering effects of MK-801 in zebrafish (Danio rerio). Behav Brain Res 220:331–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  CAS  PubMed  Google Scholar 

  21. Steindal SA, Torheim H, Oksholm T, Christensen VL et al (2019) Effectiveness of nursing interventions for breathlessness in people with chronic obstructive pulmonary disease: a systematic review and meta-analysis. J Adv Nurs 75:927–945

    Article  PubMed  Google Scholar 

  22. Liu X, Guo N, Lin J, Zhang Y et al (2014) Strain-dependent differential behavioral responses of zebrafish larvae to acute MK-801 treatment. Pharmacol Biochem Behav 127:82–89

    Article  CAS  PubMed  Google Scholar 

  23. Semmelhack JL, Donovan JC, Thiele TR, Kuehn E et al (2014) A dedicated visual pathway for prey detection in larval zebrafish. Elife 3:e04878

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gahtan E, Tanger P, Baier H (2005) Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum. J Neurosci 25:9294–9303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oldfield CS, Grossrubatscher I, Chavez M, Hoagland A et al (2020) Experience, circuit dynamics, and forebrain recruitment in larval zebrafish prey capture. Elife 9:e56619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu C, Chen W, Myers SJ, Yuan H et al (2016) Human GRIN2B variants in neurodevelopmental disorders. J Pharmacol Sci 132:115–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Widmer FC, O’Toole SM, Keller GB (2022) NMDA receptors in visual cortex are necessary for normal visuomotor integration and skill learning. Elife 11:e71476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hoffman EJ, Turner KJ, Fernandez JM, Cifuentes D et al (2016) Estrogens suppress a behavioral phenotype in zebrafish mutants of the autism risk gene, CNTNAP2. Neuron 89:725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burgess HA, Granato M (2007) Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 210:2526–2539

    Article  PubMed  Google Scholar 

  30. Wolman MA, Jain RA, Liss L, Granato M (2011) Chemical modulation of memory formation in larval zebrafish. Proc Natl Acad Sci USA 108:15468–15473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dreosti E, Lopes G, Kampff AR, Wilson SW (2015) Development of social behavior in young zebrafish. Front Neural Circuits 9:39

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bruckner JJ, Stednitz SJ, Grice MZ, Zaidan D et al (2022) The microbiota promotes social behavior by modulating microglial remodeling of forebrain neurons. PLoS Biol 20:e3001838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Geng Y, Yates C, Peterson RT (2023) Social behavioral profiling by unsupervised deep learning reveals a stimulative effect of dopamine D3 agonists on zebrafish sociality. Cell Rep Methods 3:100381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Geng Y, Zhang T, Alonzo IG, Godar SC et al (2022) Top2a promotes the development of social behavior via PRC2 and H3K27me3. Sci Adv 8:eabm7069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grants R01 NS088479 (LPW) and R03 HD107132 (HS & LPW). Figures 3 and 5 were originally published in [9] (Springer Nature Group).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lonnie P. Wollmuth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zoodsma, J.D., Gomes, C.I., Sirotkin, H.I., Wollmuth, L.P. (2024). Behavioral Assays Dissecting NMDA Receptor Function in Zebrafish. In: Burnashev, N., Szepetowski, P. (eds) NMDA Receptors. Methods in Molecular Biology, vol 2799. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3830-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3830-9_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3829-3

  • Online ISBN: 978-1-0716-3830-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics