Skip to main content

Estimating the Ca2+ Permeability of NMDA Receptors with Whole-Cell Patch-Clamp Electrophysiology

  • Protocol
  • First Online:
NMDA Receptors

Abstract

In the mammalian central nervous system (CNS), fast excitatory transmission relies primarily on the ionic fluxes generated by ionotropic glutamate receptors (iGluRs). Among iGluRs, NMDA receptors (NMDARs) are unique in their ability to pass large, Ca2+-rich currents. Importantly, their high Ca2+ permeability is essential for normal CNS function and is under physiological control. For this reason, the accurate measurement of NMDA receptor Ca2+ permeability represents a valuable experimental step in evaluating the mechanism by which these receptors contribute to a variety of physiological and pathological conditions. In this chapter, we provide a theoretical and practical overview of the common methods used to estimate the Ca2+ permeability of ion channels as they apply to NMDA receptors. Specifically, we describe the principles and methodology used to calculate relative permeability (PCa/PNa) and fractional permeability (Pf), along with the relationship between these two metrics. With increasing knowledge about the structural dynamics of ion channels and of the ongoing environmental fluctuations in which channels operate in vivo, the ability to quantify the Ca2+ entering cells through specific ion channels remains a tool essential to delineating the molecular mechanisms that support health and cause disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 03 July 2024

    A correction has been published.

References

  1. Ascher P, Nowak L (1988) The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurones in culture. J Physiol 399:247–266. https://doi.org/10.1113/jphysiol.1988.sp017078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maki BA, Popescu GK (2014) Extracellular Ca(2+) ions reduce NMDA receptor conductance and gating. J Gen Physiol 144(5):379–392. https://doi.org/10.1085/jgp.201411244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    Article  CAS  PubMed  Google Scholar 

  4. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–61

    CAS  PubMed  Google Scholar 

  5. Ewald RC, Cline HT (2009) NMDA receptors and brain development. In: Van Dongen AM (ed) Biology of the NMDA receptor. Frontiers in Neuroscience, Boca Raton

    Google Scholar 

  6. Hardingham GE, Do KQ (2016) Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat Rev Neurosci 17(2):125–134. https://doi.org/10.1038/nrn.2015.19

    Article  CAS  PubMed  Google Scholar 

  7. Hu C, Chen W, Myers SJ, Yuan H, Traynelis SF (2016) Human GRIN2B variants in neurodevelopmental disorders. J Pharmacol Sci 132(2):115–121. https://doi.org/10.1016/j.jphs.2016.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. XiangWei W, Jiang Y, Yuan H (2018) De Novo mutations and rare variants occurring in NMDA receptors. Curr Opin Physio 2:27–35. https://doi.org/10.1016/j.cophys.2017.12.013

    Article  Google Scholar 

  9. Choi DW (2020) Excitotoxicity: still hammering the ischemic brain in 2020. Front Neurosci 14:579953. https://doi.org/10.3389/fnins.2020.579953

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang J, Wang F, Mai D, Qu S (2020) Molecular mechanisms of glutamate toxicity in Parkinson's disease. Front Neurosci 14:585584. https://doi.org/10.3389/fnins.2020.585584

    Article  PubMed  PubMed Central  Google Scholar 

  11. Amin JB, Moody GR, Wollmuth LP (2021) From bedside-to-bench: what disease-associated variants are teaching us about the NMDA receptor. J Physiol 599(2):397–416. https://doi.org/10.1113/JP278705

    Article  CAS  PubMed  Google Scholar 

  12. Mayer ML, Westbrook GL (1987) Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol 394:501–527. https://doi.org/10.1113/jphysiol.1987.sp016883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schneggenburger R, Tempia F, Konnerth A (1993) Glutamate- and AMPA-mediated calcium influx through glutamate receptor channels in medial septal neurons. Neuropharmacology 32(11):1221–1228. https://doi.org/10.1016/0028-3908(93)90016-v

    Article  CAS  PubMed  Google Scholar 

  14. Jatzke C, Watanabe J, Wollmuth LP (2002) Voltage and concentration dependence of Ca(2+) permeability in recombinant glutamate receptor subtypes. J Physiol 538(Pt 1):25–39. https://doi.org/10.1113/jphysiol.2001.012897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Perszyk RE, Swanger SA, Shelley C, Khatri A, Fernandez-Cuervo G, Epplin MP, Zhang J, Le P, Bulow P, Garnier-Amblard E, Gangireddy PKR, Bassell GJ, Yuan H, Menaldino DS, Liotta DC, Liebeskind LS, Traynelis SF (2020) Biased modulators of NMDA receptors control channel opening and ion selectivity. Nat Chem Biol 16(2):188–196. https://doi.org/10.1038/s41589-019-0449-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lewis CA (1979) Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J Physiol 286:417–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goldman DE (1943) Potential, impedance, and rectification in membranes. J Gen Physiol 27(1):37–60. https://doi.org/10.1085/jgp.27.1.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol 108(1):37–77. https://doi.org/10.1113/jphysiol.1949.sp004310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sasaki YF, Rothe T, Premkumar LS, Das S, Cui J, Talantova MV, Wong HK, Gong X, Chan SF, Zhang D, Nakanishi N, Sucher NJ, Lipton SA (2002) Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J Neurophysiol 87(4):2052–2063

    Article  CAS  PubMed  Google Scholar 

  20. Burnashev N, Zhou Z, Neher E, Sakmann B (1995) Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J Physiol 485(Pt 2):403–418. https://doi.org/10.1113/jphysiol.1995.sp020738

    Article  PubMed  Google Scholar 

  21. Wollmuth LP, Sakmann B (1998) Different mechanisms of Ca2+ transport in NMDA and Ca2+−permeable AMPA glutamate receptor channels. J Gen Physiol 112(5):623–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cik M, Chazot PL, Stephenson FA (1993) Optimal expression of cloned NMDAR1/NMDAR2A heteromeric glutamate receptors: a biochemical characterization. Biochem J 296(Pt 3):877–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kussius CL, Kaur N, Popescu GK (2009) Pregnanolone sulfate promotes desensitization of activated NMDA receptors. J Neurosci 29(21):6819–6827. https://doi.org/10.1523/JNEUROSCI.0281-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950):462–465

    Article  CAS  PubMed  Google Scholar 

  25. Borschel WF, Myers JM, Kasperek EM, Smith TP, Graziane NM, Nowak LM, Popescu GK (2012) Gating reaction mechanism of neuronal NMDA receptors. J Neurophysiol 108(11):3105–3115. https://doi.org/10.1152/jn.00551.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Patch-Clamp Methods and Protocols (2014) Methods in molecular biology, 2nd edn. https://doi.org/10.1007/978-1-4939-1096-0

    Book  Google Scholar 

  27. Tsuzuki K, Mochizuki S, Iino M, Mori H, Mishina M, Ozawa S (1994) Ion permeation properties of the cloned mouse epsilon 2/zeta 1 NMDA receptor channel. Brain Res Mol Brain Res 26(1–2):37–46

    Article  CAS  PubMed  Google Scholar 

  28. Iino M, Ozawa S, Tsuzuki K (1990) Permeation of calcium through excitatory amino acid receptor channels in cultured rat hippocampal neurones. J Physiol 424:151–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100

    Article  CAS  PubMed  Google Scholar 

  30. Garaschuk O, Schneggenburger R, Schirra C, Tempia F, Konnerth A (1996) Fractional Ca2+ currents through somatic and dendritic glutamate receptor channels of rat hippocampal CA1 pyramidal neurones. J Physiol 491(Pt 3):757–772. https://doi.org/10.1113/jphysiol.1996.sp021255

    Article  PubMed  Google Scholar 

  31. Plutino S, Sciaccaluga M, Fucile S (2019) Extracellular mild acidosis decreases the Ca(2+) permeability of the human NMDA receptors. Cell Calcium 80:63–70. https://doi.org/10.1016/j.ceca.2019.04.001

    Article  CAS  PubMed  Google Scholar 

  32. Neher E (1995) The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology 34(11):1423–1442. https://doi.org/10.1016/0028-3908(95)00144-u

    Article  CAS  PubMed  Google Scholar 

  33. Schneggenburger R, Zhou Z, Konnerth A, Neher E (1993) Fractional contribution of calcium to the cation current through glutamate receptor channels. Neuron 11(1):133–143. https://doi.org/10.1016/0896-6273(93)90277-x

    Article  CAS  PubMed  Google Scholar 

  34. Stokes RH, Robinson RA (1948) Ionic hydration and activity in electrolyte solutions. J Am Chem Soc 70(5):1870–1878. https://doi.org/10.1021/ja01185a065

    Article  CAS  PubMed  Google Scholar 

  35. Lin MZ, Schnitzer MJ (2016) Genetically encoded indicators of neuronal activity. Nat Neurosci 19(9):1142–1153. https://doi.org/10.1038/nn.4359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lohr C, Beiersdorfer A, Fischer T, Hirnet D, Rotermund N, Sauer J, Schulz K, Gee CE (2021) Using genetically encoded calcium indicators to study astrocyte physiology: a field guide. Front Cell Neurosci 15:690147. https://doi.org/10.3389/fncel.2021.690147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen H, Chatelain FC, Lesage F (2014) Altered and dynamic ion selectivity of K+ channels in cell development and excitability. Trends Pharmacol Sci 35(9):461–469. https://doi.org/10.1016/j.tips.2014.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou Z, Bers DM (2000) Ca2+ influx via the L-type Ca2+ channel during tail current and above current reversal potential in ferret ventricular myocytes. J Physiol 523(Pt 1):57–66. https://doi.org/10.1111/j.1469-7793.2000.t01-2-00057.x

    Article  PubMed  Google Scholar 

  39. Zhu JJ, Lo FS (1999) Three GABA receptor-mediated postsynaptic potentials in interneurons in the rat lateral geniculate nucleus. J Neurosci 19(14):5721–5730. https://doi.org/10.1523/JNEUROSCI.19-14-05721.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Murphy JA, Stein IS, Lau CG, Peixoto RT, Aman TK, Kaneko N, Aromolaran K, Saulnier JL, Popescu GK, Sabatini BL, Hell JW, Zukin RS (2014) Phosphorylation of Ser1166 on GluN2B by PKA is critical to synaptic NMDA receptor function and Ca2+ signaling in spines. J Neurosci 34(3):869–879. https://doi.org/10.1523/JNEUROSCI.4538-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Belin S, Maki BA, Catlin J, Rein BA, Popescu GK (2022) Membrane stretch gates NMDA receptors. J Neurosci 42(29):5672–5680. https://doi.org/10.1523/JNEUROSCI.0350-22.2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Siegler Retchless B, Gao W, Johnson JW (2012) A single GluN2 subunit residue controls NMDA receptor channel properties via intersubunit interaction. Nat Neurosci 15(3):406–413, S401–406–413, S402. https://doi.org/10.1038/nn.3025

    Article  CAS  Google Scholar 

  43. Spruston N, Jonas P, Sakmann B (1995) Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. J Physiol 482(Pt 2):325–352. https://doi.org/10.1113/jphysiol.1995.sp020521

    Article  PubMed  Google Scholar 

  44. Palygin O, Lalo U, Verkhratsky A, Pankratov Y (2010) Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in cortical astrocytes. Cell Calcium 48(4):225–231. https://doi.org/10.1016/j.ceca.2010.09.004

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mae G. Weaver or Gabriela K. Popescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Weaver, M.G., Popescu, G.K. (2024). Estimating the Ca2+ Permeability of NMDA Receptors with Whole-Cell Patch-Clamp Electrophysiology. In: Burnashev, N., Szepetowski, P. (eds) NMDA Receptors. Methods in Molecular Biology, vol 2799. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3830-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3830-9_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3829-3

  • Online ISBN: 978-1-0716-3830-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics