Skip to main content

Expression and Purification of Active Monomeric MMP7

  • Protocol
  • First Online:
Proteases and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2747))

  • 472 Accesses

Abstract

MMP7 is the smallest member of the MMP family and plays multiple physiological and pathological roles through interaction with a variety of molecules. Purified MMP7 would be beneficial for studying its function and for the development of inhibitors, which could be potential therapeutics. Due to low levels of endogenously produced MMP7, its recombinant expression and purification using E. coli have been established. Here, we describe an effective method to express and purify an active form of MMP7. Our recent discovery is that adding high concentration of CaCl2 during refolding process prevents nonspecific binding of MMP7 to plastic and its aggregation, significantly improving the yield of active monomeric forms of MMP7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Massova I, Kotra LP, Fridman R, Mobashery S (1998) Matrix metalloproteinases: structures, evolution, and diversification. FASEB J 12:1075–1095

    Article  CAS  PubMed  Google Scholar 

  2. de Almeida LGN, Thode H, Eslambolchi Y et al (2022) Matrix metalloproteinases: from molecular mechanisms to physiology, pathophysiology, and pharmacology. Pharmacol Rev 74:712–768

    Article  PubMed  Google Scholar 

  3. Craig VJ, Zhang L, Hagood JS et al (2015) Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 53:585–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ke B, Fan C, Yang L et al (2017) Matrix metalloproteinases-7 and kidney fibrosis. Front Physiol 8:21

    PubMed  PubMed Central  Google Scholar 

  5. Mustafa S, Koran S, AlOmair L (2022) Insights into the role of matrix metalloproteinases in cancer and its various therapeutic aspects: a review. Front Mol Biosci 9:896099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaczorowska A, Miekus N, Stefanowicz J et al (2020) Selected matrix metalloproteinases (MMP-2, MMP-7) and their inhibitor (TIMP-2) in adult and pediatric cancer. Diagnostics (Basel) 10:547

    Article  CAS  PubMed  Google Scholar 

  7. Van Doren SR (2022) MMP-7 marks severe pancreatic cancer and alters tumor cell signaling by proteolytic release of ectodomains. Biochem Soc Trans 50:839–851

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yamamoto K, Higashi S, Kioi M et al (2006) Binding of active matrilysin to cell surface cholesterol sulfate is essential for its membrane-associated proteolytic action and induction of homotypic cell adhesion. J Biol Chem 281:9170–9180

    Article  CAS  PubMed  Google Scholar 

  9. Higashi S, Oeda M, Yamamoto K et al (2008) Identification of amino acid residues of matrix metalloproteinase-7 essential for binding to cholesterol sulfate. J Biol Chem 283:35735–35744

    Article  CAS  PubMed  Google Scholar 

  10. Yamamoto K, Miyazaki K, Higashi S (2010) Cholesterol sulfate alters substrate preference of matrix metalloproteinase-7 and promotes degradations of pericellular laminin-332 and fibronectin. J Biol Chem 285:28862–28873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ishikawa T, Kimura Y, Hirano H et al (2017) Matrix metalloproteinase-7 induces homotypic tumor cell aggregation via proteolytic cleavage of the membrane-bound Kunitz-type inhibitor HAI-1. J Biol Chem 292:20769–20784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kioi M, Yamamoto K, Higashi S et al (2003) Matrilysin (MMP-7) induces homotypic adhesion of human colon cancer cells and enhances their metastatic potential in nude mouse model. Oncogene 22:8662–8670

    Article  CAS  PubMed  Google Scholar 

  13. Yamamoto K, Miyazaki K, Higashi S (2014) Pericellular proteolysis by matrix metalloproteinase-7 is differentially modulated by cholesterol sulfate, sulfatide, and cardiolipin. FEBS J 281:3346–3356

    Article  CAS  PubMed  Google Scholar 

  14. Shiomi T, Inoki I, Kataoka F et al (2005) Pericellular activation of proMMP-7 (promatrilysin-1) through interaction with CD151. Lab Investig 85:1489–1506

    Article  CAS  PubMed  Google Scholar 

  15. Yu WH, Woessner JF, Jr McNeish JD et al (2002) CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev 16:307–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tsunezumi J, Yamamoto K, Higashi S et al (2008) Matrilysin (matrix metalloprotease-7) cleaves membrane-bound annexin II and enhances binding of tissue-type plasminogen activator to cancer cell surfaces. FEBS J 275:4810–4823

    Article  CAS  PubMed  Google Scholar 

  17. Murphy G, Nagase H (2011) Localizing matrix metalloproteinase activities in the pericellular environment. FEBS J 278:2–15

    Article  CAS  PubMed  Google Scholar 

  18. Oneda H, Inouye K (1999) Refolding and recovery of recombinant human matrix metalloproteinase 7 (matrilysin) from inclusion bodies expressed by Escherichia coli. J Biochem 126:905–911

    Article  CAS  PubMed  Google Scholar 

  19. Kihira Y, Mori K, Miyazaki K et al (1996) Production of recombinant human matrix metalloproteinase 7 (matrilysin) with potential role in tumor invasion by refolding from Escherichia coli inclusion bodies and development of sandwich ELISA of MMP-7. Urol Oncol 2:20–26

    Article  CAS  PubMed  Google Scholar 

  20. Miyazaki K, Funahashi K, Numata Y et al (1993) Purification and characterization of a two-chain form of tissue inhibitor of metalloproteinases (TIMP) type 2 and a low molecular weight TIMP-like protein. J Biol Chem 268:14387–14393

    Article  CAS  PubMed  Google Scholar 

  21. Higashi S, Miyazaki K (1999) Reactive site-modified tissue inhibitor of metalloproteinases-2 inhibits the cell-mediated activation of progelatinase A. J Biol Chem 274:10497–10504

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by an Extramural Collaborative Research Grant of the Cancer Research Institute, Kanazawa University, Japan (to S. H.), and Grants-in-Aid for Scientific Research (C) Grant Number JP19K07047 (to S. H.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. K. Y. was supported by the Versus Arthritis (21447 and 23137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouichi Higashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yamamoto, K., Isohata, M., Higashi, S. (2024). Expression and Purification of Active Monomeric MMP7. In: Santamaria, S. (eds) Proteases and Cancer. Methods in Molecular Biology, vol 2747. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3589-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3589-6_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3588-9

  • Online ISBN: 978-1-0716-3589-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics