Skip to main content

Real-Time PCR Method for Assessment of ParA-Mediated Recombination Efficiency in Minicircle Production

  • Protocol
  • First Online:
PCR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2967))

  • 947 Accesses

Abstract

The in vivo intramolecular recombination of a parental plasmid allows excising prokaryotic backbone from the eukaryotic cassette of interest, leading to the formation of, respectively, a miniplasmid and a minicircle. Here we describe a real-time PCR protocol suitable for the determination of recombination efficiency of parental plasmids with multimer resolution sites (MRS). The protocol was successfully applied to purified DNA samples obtained from E. coli cultures, allowing a more reproducible determination of recombination efficiency than densitometry analysis of agarose gels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mairhofer J, Grabherr R (2008) Rational vector design for efficient non-viral gene delivery: challenges facing the use of plasmid DNA. Mol Biotechnol 39:97–104. https://doi.org/10.1007/s12033-008-9046-7

    Article  CAS  PubMed  Google Scholar 

  2. Hardee C, Arévalo-Soliz L, Hornstein B, Zechiedrich L (2017) Advances in non-viral DNA vectors for gene therapy. Genes 8:65. https://doi.org/10.3390/genes8020065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Šimčíková M, Alves CPA, Brito L et al (2016) Improvement of DNA minicircle production by optimization of the secondary structure of the 5′-UTR of ParA resolvase. Appl Microbiol Biotechnol 100:6725–6737. https://doi.org/10.1007/s00253-016-7565-x

    Article  CAS  PubMed  Google Scholar 

  4. Alves CPA, Šimčíková M, Brito L et al (2016) Development of a nicking endonuclease-assisted method for the purification of minicircles. J Chromatogr A 1443:136–144. https://doi.org/10.1016/j.chroma.2016.03.035

    Article  CAS  PubMed  Google Scholar 

  5. Jechlinger W, Azimpour Tabrizi C, Lubitz W, Mayrhofer P (2004) Minicircle DNA immobilized in bacterial ghosts: in vivo production of safe non-viral DNA delivery vehicles. J Mol Microbiol Biotechnol 8:222–231. https://doi.org/10.1159/000086703

    Article  CAS  PubMed  Google Scholar 

  6. Chen Z-Y, He C-Y, Ehrhardt A, Kay MA (2003) Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 8:495–500. https://doi.org/10.1016/S1525-0016(03)00168-0

    Article  CAS  PubMed  Google Scholar 

  7. Kay MA, He C-Y, Chen Z-Y (2010) A robust system for production of minicircle DNA vectors. Nat Biotechnol 28:1287–1289. https://doi.org/10.1038/nbt.1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Darquet A-M, Cameron B, Wils P et al (1997) A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther 4:1341–1349. https://doi.org/10.1038/sj.gt.3300540

    Article  CAS  PubMed  Google Scholar 

  9. Smith MCM, Brown WRA, McEwan AR, Rowley PA (2010) Site-specific recombination by φC31 integrase and other large serine recombinases. Biochem Soc Trans 38:388–394. https://doi.org/10.1042/BST0380388

    Article  CAS  PubMed  Google Scholar 

  10. Stark WM (2014) The serine recombinases. Microbiol Spectr 2:MDNA3–0046–2014. https://doi.org/10.1128/microbiolspec.MDNA3-0046-2014

  11. Thomson JG, Yau Y-Y, Blanvillain R et al (2009) ParA resolvase catalyzes site-specific excision of DNA from the Arabidopsis genome. Transgenic Res 18:237–248. https://doi.org/10.1007/s11248-008-9213-4

    Article  CAS  PubMed  Google Scholar 

  12. Mayrhofer P, Blaesen M, Schleef M, Jechlinger W (2008) Minicircle-DNA production by site specific recombination and protein-DNA interaction chromatography. J Gene Med 10:1253–1269. https://doi.org/10.1002/jgm.1243

    Article  CAS  PubMed  Google Scholar 

  13. Kubista M (2014) Prime time for qPCR – raising the quality bar. Eur Pharm Rev 19:63–67

    Google Scholar 

  14. Alves CPA, Prazeres DMF, Monteiro GA (2021) Recombination efficiency measurement by real-time PCR: a strategy to evaluate ParA-mediated minicircle production. Anal Biochem 628:114285. https://doi.org/10.1016/j.ab.2021.114285

    Article  CAS  PubMed  Google Scholar 

  15. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291. https://doi.org/10.1093/bioinformatics/btm091

    Article  CAS  PubMed  Google Scholar 

  16. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3 – new capabilities and interfaces. Nucleic Acids Res 40:e115–e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nolan T, Huggett J, Sanchez E (2013) Good practice guide for the application of quantitative PCR (qPCR). LGC

    Google Scholar 

  18. Svec D, Tichopad A, Novosadova V et al (2015) How good is a PCR efficiency estimate: recommendations for precise and robust qPCR efficiency assessments. Biomol Detect Quantif 3:9–16. https://doi.org/10.1016/j.bdq.2015.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  20. Forootan A, Sjöback R, Björkman J et al (2017) Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol Detect Quantif 12:1–6. https://doi.org/10.1016/j.bdq.2017.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alves CPA, Šimčíková M, Brito L et al (2018) Production and purification of supercoiled minicircles by a combination of in vitro endonuclease nicking and hydrophobic interaction chromatography. Hum Gene Ther Methods 29:157–168. https://doi.org/10.1089/hgtb.2018.046

    Article  CAS  PubMed  Google Scholar 

  22. Azzoni AR, Ribeiro SC, Monteiro GA, Prazeres DMF (2007) The impact of polyadenylation signals on plasmid nuclease-resistance and transgene expression. J Gene Med 9:392–402. https://doi.org/10.1002/jgm.1031

    Article  CAS  PubMed  Google Scholar 

  23. Šimčíková M, Prather KLJ, Prazeres DMF, Monteiro GA (2014) On the dual effect of glucose during production of pBAD/AraC-based minicircles. Vaccine 32:2843–2846. https://doi.org/10.1016/j.vaccine.2014.02.035

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was funded by FCT, Fundação para a Ciência e a Tecnologia, I.P., in the scope of the project UIDB/04565/2020 and UIDP/04565/2020 of the Research Unit Institute for Bioengineering and Biosciences, iBB, and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy – i4HB. Cláudia Alves studies were funded by FCT-Portuguese Foundation for Science and Technology (Grant PD/BD/116842/2016, BIOTECnico Ph.D. program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel A. Monteiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alves, C.P.A., Prazeres, D.M.F., Monteiro, G.A. (2023). Real-Time PCR Method for Assessment of ParA-Mediated Recombination Efficiency in Minicircle Production. In: Domingues, L. (eds) PCR. Methods in Molecular Biology, vol 2967. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3358-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3358-8_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3357-1

  • Online ISBN: 978-1-0716-3358-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics