Skip to main content

Microfluidic Protocols for the Assessment of Anticancer Therapies in 3D Tumor-Stromal Cocultures

  • Protocol
  • First Online:
Microfluidic Systems for Cancer Diagnosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2679))

  • 576 Accesses

Abstract

Microfluidic technologies allow the generation of large datasets using smaller quantities of cells and reagents than with traditional well plate assays. Such miniaturized methods can also facilitate the generation of complex 3D preclinical models of solid tumors with controlled size and cell composition. This is particularly useful in the context of recreating the tumor microenvironment for preclinical screening of immunotherapies and combination therapies at a scale, to reduce the experimental costs during therapy development while using physiologically relevant 3D tumor models, and to assess the therapy’s efficacy. Here, we describe the fabrication of microfluidic devices and the associated protocols to culture tumor-stromal spheroids for assessing the efficacy of anticancer immunotherapies as monotherapies and as part of combination therapy regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mulholland T, McAllister M, Patek S, Flint D, Underwood M, Sim A, Edwards J, Zagnoni M (2018) Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient. Sci Rep 8(1):1–17

    Article  CAS  Google Scholar 

  2. Velve-Casquillas G, Le Berre M, Piel M, Tran PT (2010) Microfluidic tools for cell biological research. Nano Today 5(1):28–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nielsen JB, Hanson RL, Almughamsi HM, Pang C, Fish TR, Woolley AT (2020) Microfluidics: innovations in materials and their fabrication and functionalization. Anal Chem 92(1):150–168

    Article  CAS  PubMed  Google Scholar 

  4. Tsai HF, Trubelja A, Shen AQ, Bao G (2017) Tumour-on-a-chip: microfluidic models of tumour morphology, growth and microenvironment. J R Soc Interface 14(131):20170137

    Article  PubMed  PubMed Central  Google Scholar 

  5. Polini A, del Mercato LL, Barra A, Zhang YS, Calabi F, Gigli G (2019) Towards the development of human immune-system-on-a-chip platforms. Elsevier Ltd, pp 517–525

    Google Scholar 

  6. Kapara A, Findlay Paterson KA, Brunton VG, Graham D, Zagnoni M, Faulds K (2021) Detection of estrogen receptor alpha and assessment of Fulvestrant activity in MCF-7 tumor spheroids using microfluidics and SERS. Anal Chem 93(14):5862–5871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gupta N, Liu JR, Patel B, Solomon DE, Vaidya B, Gupta V (2016) Microfluidics-based 3D cell culture models: utility in novel drug discovery and delivery research. Bioeng Transl Med 1(1):63–81

    Article  PubMed  PubMed Central  Google Scholar 

  8. Convery N, Gadegaard N (2019) 30 years of microfluidics. Micro Nano Eng 2:76–91

    Article  Google Scholar 

  9. Fetah KL, DiPardo BJ, Kongadzem E-M, Tomlinson JS, Elzagheid A, Elmusrati M, Khademhosseini A, Ashammakhi N (2019) Cancer modeling-on-a-chip with future artificial intelligence integration. Small 15(50):1901985

    Article  CAS  Google Scholar 

  10. Dhandapani M, Goldman A (2017) Preclinical cancer models and biomarkers for drug development: new technologies and emerging tools. J Mol Biomark Diagn 8(5):356

    Article  PubMed  PubMed Central  Google Scholar 

  11. Edmondson R, Broglie JJ, Adcock AF, Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12(4):207–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bassez A, Vos H, Van Dyck L, Floris G, Arijs I, Desmedt C, Boeckx B, Vanden Bempt M, Nevelsteen I, Lambein K, Punie K, Neven P, Garg AD, Wildiers H, Qian J, Smeets A, Lambrechts D (2021) A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat Med 27(5):820–832

    Article  CAS  PubMed  Google Scholar 

  13. Gao M, Wang T, Ji L, Bai S, Tian L, Song H (2020) Therapy with carboplatin and anti-PD-1 antibodies before surgery demonstrates sustainable anti-tumor effects for secondary cancers in mice with triple-negative breast cancer. Front Immunol 11:366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Srivastava S, Furlan SN, Jaeger-Ruckstuhl CA, Sarvothama M, Berger C, Smythe KS, Garrison SM, Specht JM, Lee SM, Amezquita RA, Voillet V, Muhunthan V, Yechan-Gunja S, Pillai SPS, Rader C, Houghton AM, Pierce RH, Gottardo R, Maloney DG, Riddell SR (2020) Immunogenic chemotherapy enhances recruitment of CAR-T cells to lung tumors and improves antitumor efficacy when combined with checkpoint blockade. Cancer Cell 39(2):193–208

    Article  PubMed  PubMed Central  Google Scholar 

  15. Emens LA, Middleton G (2015) The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol Res 3(5):436–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bailly C, Thuru X, Quesnel B (2020) Combined cytotoxic chemotherapy and immunotherapy of cancer: modern times. NAR Cancer 2(1):zcaa002

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hartl CA, Bertschi A, Puerto RB, Andresen C, Cheney EM, Mittendorf EA, Guerriero JL, Goldberg MS (2019) Combination therapy targeting both innate and adaptive immunity improves survival in a pre-clinical model of ovarian cancer. J Immunother Cancer 7(1):199

    Article  PubMed  PubMed Central  Google Scholar 

  18. Paterson K, Paterson S, Mulholland T, Coffelt SB, Zagnoni M (2022) Assessment of CAR-T mediated and targeted cytotoxicity in 3D microfluidic TBNC co-culture models for combination therapy. IEEE OJEMB, 3: 86–95

    Google Scholar 

  19. Ibidi (2015) Live/dead staining with FDA and PI, Application Note 33; Version 2.0: Available from: https://ibidi.com/img/cms/support/AN/AN33_Live_Dead_staining_with_FDA_and_PI.pdf

Download references

Acknowledgments

This work was funded by AMS Biotechnology Europe Ltd. (industrial PhD studentship to K.P and M.Z) and internal funds by Strathclyde University to M.Z. and K.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Zagnoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Paterson, K., Zagnoni, M. (2023). Microfluidic Protocols for the Assessment of Anticancer Therapies in 3D Tumor-Stromal Cocultures. In: Garcia-Cordero, J.L., Revzin, A. (eds) Microfluidic Systems for Cancer Diagnosis . Methods in Molecular Biology, vol 2679. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3271-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3271-0_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3270-3

  • Online ISBN: 978-1-0716-3271-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics