Skip to main content

Lateral Filter Array Microfluidic Devices for Detecting Circulating Tumor Cells

  • Protocol
  • First Online:
Microfluidic Systems for Cancer Diagnosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2679))

  • 630 Accesses

Abstract

Circulating tumor cells (CTCs) are an important liquid biopsy biomarker for next-generation cancer diagnosis and prognosis. However, their clinical usage is hindered by the rarity of CTCs in patient’s peripheral blood. Microfluidics has shown unique advantages in CTC isolation and detection. We have developed lateral filter array microfluidic (LFAM) devices for highly efficient CTC isolation. In this chapter, we describe in detail the design and fabrication of the LFAM devices and their applications for CTC enumeration from clinical blood samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Klein CA (2008) The metastasis cascade. Science 321(5897):1785–1787

    Article  CAS  PubMed  Google Scholar 

  2. Poudineh M, Sargent EH, Pantel K, Kelley SO (2018) Profiling circulating tumour cells and other biomarkers of invasive cancers. Nat Biomed Eng 2(2):72–84. https://doi.org/10.1038/s41551-018-0190-5

    Article  CAS  PubMed  Google Scholar 

  3. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791

    Article  CAS  PubMed  Google Scholar 

  4. Paterlini-Brechot P, Benali NL (2007) Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett 253(2):180–204

    Article  CAS  PubMed  Google Scholar 

  5. Danila DC, Heller G, Gignac GA, Gonzalez-Espinoza R, Anand A, Tanaka E, Lilja H, Schwartz L, Larson S, Fleisher M, Scher HI (2007) Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin Cancer Res 13(23):7053–7058. https://doi.org/10.1158/1078-0432.ccr-07-1506

    Article  CAS  PubMed  Google Scholar 

  6. Chen K, Amontree J, Varillas J, Zhang J, George TJ, Fan ZH (2020) Incorporation of lateral microfiltration with immunoaffinity for enhancing the capture efficiency of rare cells. Sci Rep 10(1):1–12. https://doi.org/10.1038/s41598-020-71041-7

  7. Varillas JI, Zhang J, Chen K, Barnes II, Liu C, George TJ, Fan ZH (2019) Microfluidic isolation of circulating tumor cells and cancer stem-like cells from patients with pancreatic ductal adenocarcinoma. Theranostics 9(5):1417–1425. https://doi.org/10.7150/thno.28745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stott SL, Hsu C-H, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, Rothenberg SM, Shah AM, Smas ME, Korir GK, Floyd FP, Gilman AJ, Lord JB, Winokur D, Springer S, Irimia D, Nagrath S, Sequist LV, Lee RJ, Isselbacher KJ, Maheswaran S, Haber DA, Toner M (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci 107(43):18392–18397. https://doi.org/10.1073/pnas.1012539107

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mohamadi RM, Besant JD, Mepham A, Green B, Mahmoudian L, Gibbs T, Ivanov I, Malvea A, Stojcic J, Allan AL, Lowes LE, Sargent EH, Nam RK, Kelley SO (2015) Nanoparticle-mediated binning and profiling of heterogeneous circulating tumor cell subpopulations. Angew Chem Int Ed Engl 54(1):139–143. https://doi.org/10.1002/anie.201409376

    Article  CAS  PubMed  Google Scholar 

  11. Vona G, Sabile A, Louha M, Sitruk V, Romana S, Schütze K, Capron F, Franco D, Pazzagli M, Vekemans M, Lacour B, Bréchot C, Paterlini-Bréchot P (2000) Isolation by size of epithelial tumor cells: a new method for the Immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol 156(1):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sollier E, Go DE, Che J, Gossett DR, O'Byrne S, Weaver WM, Kummer N, Rettig M, Goldman J, Nickols N, McCloskey S, Kulkarni RP, Di Carlo D (2014) Size-selective collection of circulating tumor cells using vortex technology. Lab Chip 14(1):63–77. https://doi.org/10.1039/c3lc50689d

    Article  CAS  PubMed  Google Scholar 

  13. McFaul SM, Lin BK, Ma H (2012) Cell separation based on size and deformability using microfluidic funnel ratchets. Lab Chip 12(13):2369–2376

    Article  CAS  PubMed  Google Scholar 

  14. Park ES, Jin C, Guo Q, Ang RR, Duffy SP, Matthews K, Azad A, Abdi H, Todenhofer T, Bazov J, Chi KN, Black PC, Ma H (2016) Continuous flow deformability-based separation of circulating tumor cells using microfluidic ratchets. Small 12(14):1909–1919. https://doi.org/10.1002/smll.201503639

    Article  CAS  PubMed  Google Scholar 

  15. Moon H-S, Kwon K, Kim S-I, Han H, Sohn J, Lee S, Jung H-I (2011) Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip 11(6):1118–1125

    Article  CAS  PubMed  Google Scholar 

  16. Ding X, Peng Z, Lin S-CS, Geri M, Li S, Li P, Chen Y, Dao M, Suresh S, Huang TJ (2014) Cell separation using tilted-angle standing surface acoustic waves. Proc Natl Acad Sci U S A 111(36):12992–12997. https://doi.org/10.1073/pnas.1413325111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen K, Dopico P, Varillas J, Zhang J, George TJ, Fan ZH (2019) Integration of lateral filter arrays with Immunoaffinity for circulating-tumor-cell isolation. Angew Chem Int Ed Engl 58(23):7606–7610. https://doi.org/10.1002/anie.201901412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Hugh Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, K., George, T.J., Fan, Z.H. (2023). Lateral Filter Array Microfluidic Devices for Detecting Circulating Tumor Cells. In: Garcia-Cordero, J.L., Revzin, A. (eds) Microfluidic Systems for Cancer Diagnosis . Methods in Molecular Biology, vol 2679. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3271-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3271-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3270-3

  • Online ISBN: 978-1-0716-3271-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics