Skip to main content

Expression of the Bacterial Enzyme IdeS Using a GFP Fusion in the Yeast Saccharomyces cerevisiae

  • Protocol
  • First Online:
Bacterial Pathogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2674))

  • 1139 Accesses

Abstract

Bacterial proteases are important enzymes used in several technical applications where controlled cleavage of proteins is needed. They are challenging enzymes to express recombinantly as parts of the proteome can be hydrolyzed by their activity. The eukaryotic model organism Saccharomyces cerevisiae is potentially a good expression host as it tolerates several stress conditions and is known to better express insoluble proteins compared to bacterial systems. In this chapter we describe how the protease IdeS from Streptococcus pyogenes can be expressed in S. cerevisiae. The expression of IdeS was followed by constructing a fused protein with GFP and measuring the fluorescence with flow cytometry. The protease presence was confirmed with a Western blot assay and activity was measured with an in vitro assay. To reduce potentially toxic effect on the host cell, the growth and production phases were separated by using the inducible promoter GAL1p to control recombinant gene expression. The protocol provided may be adopted for other bacterial proteases through minor modifications of the fused protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ward OP (2011) 3.49 – proteases. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic, Burlington, pp 571–582

    Chapter  Google Scholar 

  2. Nelson AD et al (2012) IgG Fab fragments forming bivalent complexes by a conformational mechanism that is reversible by osmolytes. J Biol Chem 287(51):42936–42950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Komai T et al (1997) Development of HIV-1 protease expression methods using the T7 phage promoter system. Appl Microbiol Biotechnol 47(3):241–245

    Article  CAS  PubMed  Google Scholar 

  4. Kwon K et al (2011) Recombinant expression and functional analysis of proteases from Streptococcus pneumoniae, Bacillus anthracis, and Yersinia pestis. BMC Biochem 12:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xie Y, Han X, Miao Y (2018) An effective recombinant protein expression and purification system in Saccharomyces cerevisiae. Curr Protoc Mol Biol 123(1):e62

    Article  PubMed  Google Scholar 

  6. Liu ZH et al (2012) Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnol Bioeng 109(5):1259–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Borodina I, Nielsen J (2014) Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol J 9(5):609–620

    Article  CAS  PubMed  Google Scholar 

  8. Hahn-Hägerdal B et al (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953

    Article  PubMed  Google Scholar 

  9. Fraczek MG, Naseeb S, Delneri D (2018) History of genome editing in yeast. Yeast 35(5):361–368

    Article  CAS  PubMed  Google Scholar 

  10. Alexander WG (2018) A history of genome editing in Saccharomyces cerevisiae. Yeast 35(5):355–360

    Article  CAS  PubMed  Google Scholar 

  11. Jessop-Fabre MM et al (2016) EasyClone-MarkerFree: a vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9. Biotechnol J 11(8):1110–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mikkelsen MD et al (2012) Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metab Eng 14(2):104–111

    Article  CAS  PubMed  Google Scholar 

  13. Li J et al (2000) Green fluorescent protein in Saccharomyces cerevisiae: real-time studies of the GAL1 promoter. Biotechnol Bioeng 70(2):187–196

    Article  CAS  PubMed  Google Scholar 

  14. von Pawel-Rammingen U, Johansson BP, Bjorck L (2002) IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J 21(7):1607–1615

    Article  Google Scholar 

  15. Johansson BP, Shannon O, Björck L (2008) IdeS: a bacterial proteolytic enzyme with therapeutic potential. PLoS One 3(2):e1692

    Article  PubMed  PubMed Central  Google Scholar 

  16. Collin M, Olsén A (2003) Extracellular enzymes with immunomodulating activities: variations on a theme in Streptococcus pyogenes. Infect Immun 71(6):2983–2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vincents B et al (2004) Enzymatic characterization of the streptococcal endopeptidase, IdeS, reveals that it is a cysteine protease with strict specificity for IgG cleavage due to exosite binding. Biochemistry 43(49):15540–15549

    Article  CAS  PubMed  Google Scholar 

  18. Heins A-L et al (2019) Quantitative flow cytometry to understand population heterogeneity in response to changes in substrate availability in Escherichia coli and Saccharomyces cerevisiae chemostats. Front Bioeng Biotechnol 7:187

    Article  PubMed  PubMed Central  Google Scholar 

  19. Davey HM, Hexley P (2011) Red but not dead? Membranes of stressed Saccharomyces cerevisiae are permeable to propidium iodide. Environ Microbiol 13(1):163–171

    Article  CAS  PubMed  Google Scholar 

  20. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31–34

    Article  CAS  PubMed  Google Scholar 

  21. Grote A et al (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33(Web Server issue):W526–W531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Carlquist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lindh, T., Collin, M., Lood, R., Carlquist, M. (2023). Expression of the Bacterial Enzyme IdeS Using a GFP Fusion in the Yeast Saccharomyces cerevisiae. In: Nordenfelt, P., Collin, M. (eds) Bacterial Pathogenesis. Methods in Molecular Biology, vol 2674. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3243-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3243-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3242-0

  • Online ISBN: 978-1-0716-3243-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics