Skip to main content

Formation and Analysis of Mono-species and Polymicrobial Oral Biofilms in Flow-Cell Models

  • Protocol
  • First Online:
Bacterial Pathogenesis

Abstract

The oral microbiota, which is known to include at least 600 different bacterial species, is found on the teeth and mucosal surfaces as multi-species communities or biofilms. The oral surfaces are covered with a pellicle of proteins absorbed from saliva, and biofilm formation is initiated when primary colonizers, which express surface adhesins that bind to specific salivary components, attach to the oral tissues. Further development then proceeds through co-aggregation of additional species. Over time, the composition of oral biofilms, which varies between different sites throughout the oral cavity, is determined by a combination of environmental factors such as the properties of the underlying surface, nutrient availability and oxygen levels, and bacterial interactions within the community. A complex equilibrium between biofilm communities and the host is responsible for the maintenance of a healthy biofilm phenotype (eubiosis). In the face of sustained environmental perturbation, however, biofilm homeostasis can break down giving rise to dysbiosis, which is associated with the development of oral diseases such as caries and periodontitis.

In vitro models have an important part to play in increasing our understanding of the complex processes involved in biofilm development in oral health and disease, and the requirements for experimental system, microbial complexity, and analysis techniques will necessarily vary depending on the question posed. In this chapter we describe some current and well-established methods used in our laboratory for studying oral bacteria in biofilm models which can be adapted to suit the needs of individual users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG (2010) The human oral microbiome. J Bacteriol 192:5002–5017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wade W (2021) Resilience of the oral microbiome. Periodontol 2000 86:113–122

    Article  PubMed  Google Scholar 

  3. Siqueira WL, Zhang W, Helmerhorst EJ, Gygi SP, Oppenheimer FG (2007) Identification of protein components in in vivo human acquired enamel pellicle using LC-ESI-MS/MS. J Proteome Res 6:2152–2160

    Article  CAS  PubMed  Google Scholar 

  4. Nobbs AH, Lamont RJ, Jenkinson HF (2009) Streptococcus adherence and colonization. Microbiol Mol Biol Rev 73:407–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Diaz PI, Chalmers NI, Rickard AH, Kong C, Milburn CL, Palmer RJ Jr, Kolenbrander PE (2006) Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl Environ Microbiol 72:2837–2848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ Jr (2002) Communication among oral bacteria. Microbiol Mol Biol Rev 66:486–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    Article  CAS  PubMed  Google Scholar 

  8. Xu X, He J, Xue J, Wang Y, Li K, Zhang K, Guo Q, Liu X, Zhou Y, Cheng L, Li M, Li Y, Li Y, Shi W, Zhou X (2015) Oral cavity contains distinct niches with dynamic microbial communities. Environ Microbiol 17:699–710

    Article  PubMed  Google Scholar 

  9. Costalonga M, Herzberg MC (2014) The oral microbiome and the immunology of periodontal disease and caries. Immunol Lett 162:22–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wickström C, Herzberg MC, Beighton D, Svensäter G (2009) Proteolytic degradation of human salivary MUC5B by dental biofilms. Microbiology 155:2866–2872

    Article  PubMed  PubMed Central  Google Scholar 

  11. The-Human-Microbiome-Project-Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  PubMed Central  Google Scholar 

  12. Killian M, Chapple IL, Hannig M, Marsh PD, Meuric V, Pedersen AM, Tonetti MS, Wade WG, Zaura E (2016) The oral microbiome - an update for oral healthcare professionals. Br Dent J 221:657–666

    Article  Google Scholar 

  13. Marsh PD (2003) Are dental diseases example of ecological catastrophes? Microbiology 149:279–294

    Article  CAS  PubMed  Google Scholar 

  14. Lamont RJ, Koo H, Hajishengallis G (2018) The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol 16:745–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davies JR, Wickström C, Thornton DJ (2012) Gel-forming and cell-associated mucins: preparation for structural and functional studies. Methods Mol Biol 842:27–47

    Article  CAS  PubMed  Google Scholar 

  16. Robertsson C, Svensäter G, Blum Z, Jakobsson ME, Wickström C (2021) Proteomic response in Streptococcus gordonii DL1 biofilm cells during attachment to salivary MUC5B. J Oral Microbiol 13:1967636. https://doi.org/10.1080/20002297.2021.1967636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davies JR, Kad T, Neilands J, Kinnby B, Prgomet Z, Bengtsson T, Khalaf H, Svensäter G (2021) Polymicrobial synergy stimulates Porphyromonas gingivalis survival and gingipain expression in a multi-species subgingival community. BMC Oral Health 21(1):639. https://doi.org/10.1186/s12903-021-01971-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De Palma VA (1976) Correlation of surface electrical properties with initial events in bioadhesion. Ph.D. thesis. State University of New York, Buffalo, NY

    Google Scholar 

  19. Dorkhan M, Chávez de Paz LE, Skepö M, Svensäter G, Davies JR (2012) Salivary pellicles on titanium and their effect on metabolic activity in Streptococcus oralis. Microbiol 158:390–397

    Article  CAS  Google Scholar 

  20. Welin-Neilands J, Svensäter G (2007) Acid tolerance of biofilm cells of Streptococcus mutans. Appl Environ Microbiol 73:5633–5638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Senneby A, Davies JR, Svensäter G, Neilands J (2017) Acid tolerance properties of dental biofilms in vivo. BMC Microbiol 17(1):165. https://doi.org/10.1186/s12866-017-1074-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boisen G, Davies JR, Neilands J (2021) Acid tolerance in early colonizers of oral biofilms. BMC Microbiol 21(1):45. https://doi.org/10.1186/s12866-021-02089-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from The Foresight Programme at Malmö University, The Biofilms Research Center for Biointerfaces, and Odontologisk Forskning Region Skåne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia R. Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Neilands, J., Svensäter, G., Boisen, G., Robertsson, C., Wickström, C., Davies, J.R. (2023). Formation and Analysis of Mono-species and Polymicrobial Oral Biofilms in Flow-Cell Models. In: Nordenfelt, P., Collin, M. (eds) Bacterial Pathogenesis. Methods in Molecular Biology, vol 2674. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3243-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3243-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3242-0

  • Online ISBN: 978-1-0716-3243-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics