Skip to main content

Affinity-Purification Combined with Crosslinking Mass Spectrometry for Identification and Structural Modeling of Host–Pathogen Protein–Protein Complexes

  • Protocol
  • First Online:
Bacterial Pathogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2674))

Abstract

Host–pathogen protein–protein interactions are highly complex and dynamic and mediate key steps in pathogen adhesion to host, host invasion, and colonization as well as immune evasion. In bacteria, these interactions most often involve specialized virulence factors or effector proteins that specifically target central host proteins. Here, I present a mass spectrometry-based proteomics approach starting with the identification of host–pathogen interactions by affinity-purification followed by mapping the specific host–pathogen protein–protein interaction interfaces by crosslinking mass spectrometry and structural modeling of the complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Happonen L, Hauri S, Birkedal GS et al (2019) A quantitative Streptococcus pyogenes–human protein–protein interaction map reveals localization of opsonizing antibodies. Nat Commun 10:2727. https://doi.org/10.1038/s41467-019-10583-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu X, Huuskonen S, Laitinen T et al (2021) SARS-CoV-2–host proteome interactions for antiviral drug discovery. Mol Syst Biol 17:e10396. https://doi.org/10.15252/msb.202110396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Penn BH, Netter Z, Johnson JR et al (2018) An Mtb-human protein-protein interaction map identifies a switch between host antiviral and antibacterial responses. Mol Cell 71:637–648.e5. https://doi.org/10.1016/j.molcel.2018.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jäger S, Cimermancic P, Gulbahce N et al (2012) Global landscape of HIV–human protein complexes. Nature 481:365–370. https://doi.org/10.1038/nature10719

    Article  CAS  Google Scholar 

  5. D’Costa VM, Coyaud E, Boddy KC et al (2019) BioID screen of Salmonella type 3 secreted effectors reveals host factors involved in vacuole positioning and stability during infection. Nat Microbiol 4:2511–2522. https://doi.org/10.1038/s41564-019-0580-9

    Article  CAS  PubMed  Google Scholar 

  6. Olson MG, Widner RE, Jorgenson LM et al (2019) Proximity labeling to map host-pathogen interactions at the membrane of a bacterium-containing vacuole in chlamydia trachomatis-infected human cells. Infect Immun 87:e00537–e00519. https://doi.org/10.1128/iai.00537-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dickinson MS, Anderson LN, Webb-Robertson B-JM et al (2019) Proximity-dependent proteomics of the chlamydia trachomatis inclusion membrane reveals functional interactions with endoplasmic reticulum exit sites. PLoS Pathog 15:e1007698. https://doi.org/10.1371/journal.ppat.1007698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. V’kovski P, Gerber M, Kelly J et al (2019) Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity-labeling. elife 8:e42037. https://doi.org/10.7554/elife.42037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Breton ML, Meyniel-Schicklin L, Deloire A et al (2011) Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen. BMC Microbiol 11:234. https://doi.org/10.1186/1471-2180-11-234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qin L, Wang X, Gao Y et al (2020) Roles of EvpP in Edwardsiella piscicida-macrophage interactions. Front Cell Infect Mi 10:53. https://doi.org/10.3389/fcimb.2020.00053

    Article  CAS  Google Scholar 

  11. Margarit I, Bonacci S, Pietrocola G et al (2009) Capturing host-pathogen interactions by protein microarrays: identification of novel streptococcal proteins binding to human fibronectin, fibrinogen, and C4BP. FASEB J 23:3100–3112. https://doi.org/10.1096/fj.09-131458

    Article  CAS  PubMed  Google Scholar 

  12. Hauri S, Khakzad H, Happonen L et al (2019) Rapid determination of quaternary protein structures in complex biological samples. Nat Commun 10:192. https://doi.org/10.1038/s41467-018-07986-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chowdhury S, Khakzad H, Bergdahl GE et al (2021) Streptococcus pyogenes forms serotype- and local environment-dependent interspecies protein complexes. Msystems 6:e0027121. https://doi.org/10.1128/msystems.00271-21

    Article  CAS  PubMed  Google Scholar 

  14. Schweppe DK, Harding C, Chavez JD et al (2015) Host-microbe protein interactions during bacterial infection. Chem Biol 22:1521–1530. https://doi.org/10.1016/j.chembiol.2015.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319. https://doi.org/10.1038/nprot.2016.136

    Article  CAS  PubMed  Google Scholar 

  16. Tyanova S, Temu T, Sinitcyn P et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740. https://doi.org/10.1038/nmeth.3901

    Article  CAS  PubMed  Google Scholar 

  17. Chen Z-L, Meng J-M, Cao Y et al (2019) A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides. Nat Commun 10:3404. https://doi.org/10.1038/s41467-019-11337-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grimm M, Zimniak T, Kahraman A, Herzog F (2015) xVis: a web server for the schematic visualization and interpretation of crosslink-derived spatial restraints. Nucleic Acids Res 43:W362–W369. https://doi.org/10.1093/nar/gkv463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zundert GCP v, Rodrigues JPGLM, Trellet M et al (2016) The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428:720–725. https://doi.org/10.1016/j.jmb.2015.09.014

    Article  CAS  PubMed  Google Scholar 

  20. Yang B, Wu Y-J, Zhu M et al (2012) Identification of cross-linked peptides from complex samples. Nat Methods 9:904–906. https://doi.org/10.1038/nmeth.2099

    Article  CAS  PubMed  Google Scholar 

  21. Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with alpha fold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chambers MC, Maclean B, Burke R et al (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920. https://doi.org/10.1038/nbt.2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schiffrin B, Radford SE, Brockwell DJ, Calabrese AN (2020) PyXlinkViewer: a flexible tool for visualization of protein chemical crosslinking data within the PyMOL molecular graphics system. Protein Sci 29:1851–1857. https://doi.org/10.1002/pro.3902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Support from the Swedish National Infrastructure for Biological Mass Spectrometry (BioMS) and the SciLifeLab, Integrated Structural Biology platform (ISB), is gratefully acknowledged. The cloning, expression, and purification of ISP and GFP were performed at the Lund Protein Production Platform, Lund University, Sweden (http://www.lu.se/lp3). This work was supported by the Crafoord Foundation, the Royal Physiographic Society of Lund, Stiftelsen Clas Groschinskys Minnesfond, Åke Wibergs Stiftelse, and Alfred Österlunds Stiftelse. Emil Tykesson is acknowledged for generating the AlphaFold model of ISP, and Simon Ekström and Esko Oksanen for critically reviewing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotta J. Happonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Happonen, L.J. (2023). Affinity-Purification Combined with Crosslinking Mass Spectrometry for Identification and Structural Modeling of Host–Pathogen Protein–Protein Complexes. In: Nordenfelt, P., Collin, M. (eds) Bacterial Pathogenesis. Methods in Molecular Biology, vol 2674. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3243-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3243-7_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3242-0

  • Online ISBN: 978-1-0716-3243-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics