Skip to main content

Nonlinear Methods for the Investigation of Psychotic Disorders

  • Protocol
  • First Online:
Computational Neuroscience

Part of the book series: Neuromethods ((NM,volume 199))

  • 632 Accesses

Abstract

The basic aspects of nonlinear dynamics theory’s utility and impact on understanding psychotic disorders are reviewed and discussed in this chapter. A different view of nonlinear approaches as a metaphor, analogy, and mathematical/physical concept is presented, with an emphasis on how the latter can be applied to empirical knowledge of psychotic disorders. The typical behavior of patients with psychotic disorders and general chaotic systems is discussed, as well as the dynamical analysis of time series extracted from such systems. The original question is rephrased in chaos theory terminology: “Are psychotic disorders described as dynamical processes?” There are some implications to viewing psychotic disorders as dynamic processes which enable the chaos theory approach to give deeper insights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moreno-Küstner B, Martín C, Pastor L (2018) Prevalence of psychotic disorders and its association with methodological issues. A systematic review and meta-analyses. PLoS One 13(4):e0195687

    Article  PubMed  PubMed Central  Google Scholar 

  2. Saunders NR, Gandhi S, Chen S et al (2020) Health care use and costs of children, adolescents, and young adults with somatic symptom and related disorders. JAMA Netw Open 3(7):e2011295–e2011295

    Article  PubMed  PubMed Central  Google Scholar 

  3. Roessner V, Rothe J, Kohls G et al (2021) Taming the chaos?! Using eXplainable Artificial Intelligence (XAI) to tackle the complexity in mental health research. Eur Child Adolesc Psychiatry 30(8):1143–1146

    Article  PubMed  PubMed Central  Google Scholar 

  4. Strogatz SH (2015) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, 2nd edn. CRC Press

    Google Scholar 

  5. Hosenfeld B, Bos EH, Wardenaar KJ et al (2015) Major depressive disorder as a nonlinear dynamic system: bimodality in the frequency distribution of depressive symptoms over time. BMC Psychiatry 15(1):222

    Article  PubMed  PubMed Central  Google Scholar 

  6. Breakspear M (2017) Dynamic models of large-scale brain activity. Nat Neurosci 20(3):340–352

    Article  CAS  PubMed  Google Scholar 

  7. Paulus MP, Braff DL (2003) Chaos and schizophrenia: does the method fit the madness? Biol Psychiatry 53(1):3–11

    Article  PubMed  Google Scholar 

  8. Pham TD, Abe T, Oka R et al (2015) Measures of morphological complexity of gray matter on magnetic resonance imaging for control age grouping. Entropy 17(12):1099–4300

    Article  Google Scholar 

  9. Huber MT, Braun HA, Voigt K et al (2001) Some computational aspects of the kindling model for neuropsychiatric disorders. Neurocomputing 38(40):1297–1306

    Article  Google Scholar 

  10. Fernández A, Gómez C, Hornero R et al (2013) Complexity and schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 45:267–276

    Article  Google Scholar 

  11. John AM, Elfanagely O, Ayala CA et al (2015) The utility of fractal analysis in clinical. Neuroscience 26(6):633–645

    Google Scholar 

  12. Pezard L, Nandrino JL (2001) Dynamic paradigm in psychopathology: “chaos theory”, from physics to psychiatry. Encéphale 27(3):260–268

    CAS  PubMed  Google Scholar 

  13. Hoffman RE, Dobscha SK (1989) Cortical pruning and the development of schizophrenia: a computer model. Schizophr Bull 15(3):477–490

    Article  CAS  PubMed  Google Scholar 

  14. Jia Y, Gu H (2019) Identifying nonlinear dynamics of brain functional networks of patients with schizophrenia by sample entropy. Nonlinear Dyn 96(4):2327–2340

    Article  Google Scholar 

  15. Varley TF, Carhart-Harris R, Roseman L et al (2020) Serotonergic psychedelics LSD & psilocybin increase the fractal dimension of cortical brain activity in spatial and temporal domains. NeuroImage 220:117049

    Article  CAS  PubMed  Google Scholar 

  16. Stephan KE, Kasper L, Harrison LM et al (2008) Nonlinear dynamic causal models for fMRI. NeuroImage 42(2):649–662

    Article  PubMed  Google Scholar 

  17. Oribe N, Hirano Y, Kanba S et al (2015) Progressive reduction of visual P300 amplitude in patients with first-episode schizophrenia: an ERP Study. Schizophr Bull 41(2):460–470

    Article  PubMed  Google Scholar 

  18. Turetsky BI, Dress EM, Braff DL et al (2015) The utility of P300 as a schizophrenia endophenotype and predictive biomarker: clinical and socio-demographic modulators in COGS-2. Schizophr Res 163(1):53–62

    Article  PubMed  Google Scholar 

  19. Korda AI, Ventouras E, Asvestas P et al (2022) Convolutional neural network propagation on electroencephalographic scalograms for detection of schizophrenia. Clin Neurophysiol 139:90–105

    Article  CAS  PubMed  Google Scholar 

  20. Light GA, Zhang W, Joshi YB et al (2017) Single-dose Memantine improves cortical oscillatory response dynamics in patients with schizophrenia. Neuropsychopharmacology 42(13):2633–2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kirihara K, Rissling AJ, Swerdlow NR et al (2012) Hierarchical Organization of Gamma and Theta Oscillatory Dynamics in Schizophrenia. Biol Psychiatry 71(10):873–880

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lainscsek C, Sampson AL, Kim R et al (2019) Nonlinear dynamics underlying sensory processing dysfunction in schizophrenia. Proc Natl Acad Sci 116(9):3847–3852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kutepov IE, Dobriyan VV, Zhigalov MV et al (2020) EEG analysis in patients with schizophrenia based on Lyapunov exponents. Inform Med Unlock 18:100289

    Article  Google Scholar 

  24. Dick OE, Murav’eva SV, Lebedev VS et al (2022) Fractal structure of brain electrical activity of patients with mental disorders. Front Physiol 13. https://doi.org/10.3389/fphys.2022.905318

  25. Namazi H, Aghasian E, Ala TS (2019) Fractal-based classification of electroencephalography (EEG) signals in healthy adolescents and adolescents with symptoms of schizophrenia. Technol Health Care 27:233–241

    Article  PubMed  Google Scholar 

  26. Raghavendra BS, Dutt DN, Halahalli HN et al (2009) Complexity analysis of EEG in patients with schizophrenia using fractal dimension. Physiol Meas 30(8):795

    Article  CAS  PubMed  Google Scholar 

  27. Alpert M, Kotsaftis A, Pouget ER (1994) At issue: speech fluency and schizophrenic negative signs. Schizophr Bull 23:171–177

    Article  Google Scholar 

  28. Spitzer M, Beuckers J, Beyer S et al (1994) Contextual insensitivity in thought-disordered schizophrenic patients: evidence from pauses in spontaneous speech. Lang Speech 37(2):171–185

    Article  PubMed  Google Scholar 

  29. Todder D, Avissar S, Schreiber G (2013) Non-linear dynamic analysis of inter-word time intervals in psychotic speech. IEEE J Transl Eng Health Med 1:2200107

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fusaroli R, Simonsen A, Weed E et al (2014) Poster #M197 non-linear dynamics of speech in schizophrenia: a machine-learning approach. Schizophr Res 153:S262

    Article  Google Scholar 

  31. Hamm J, Kohler CG, Gur RC et al (2011) Automated Facial Action Coding System for dynamic analysis of facial expressions in neuropsychiatric disorders. J Neurosci Methods 200(2):237–256

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gupta T, Haase CM, Strauss GP et al (2022) Alterations in facial expressions of emotion: determining the promise of ultrathin slicing approaches and comparing human and automated coding methods in psychosis risk. Emotion 22:714–724

    Article  PubMed  Google Scholar 

  33. Jian B-L, Chen C-L, Chu W-L et al (2017) The facial expression of schizophrenic patients applied with infrared thermal facial image sequence. BMC Psychiatry 17(1):229

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gupta T, Haase CM, Strauss GP et al (2019) Alterations in facial expressivity in youth at clinical high-risk for psychosis. J Abnorm Psychol 128(4):341–351

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bhatia S, Goecke R, Hammal Z et al (2019) Automated measurement of head movement synchrony during dyadic depression severity interviews. In 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition 14–18 May 2019, p 1–8

    Google Scholar 

  36. Breakspear M (2006) The nonlinear theory of schizophrenia. Australian New Zealand J Psychiatry 40(1):20–35

    Article  Google Scholar 

  37. Bleuler E (1950) Dementia praecox or the group of schizophrenias. Dementia praecox or the group of schizophrenias. International Universities Press, Oxford, p 548

    Google Scholar 

  38. Paulus MP, Geyer MA, Braff DL (1996) Use of methods from chaos theory to quantify a fundamental dysfunction in the behavioral organization of schizophrenic patients. Am J Psychiatr 153(5):714–717

    Article  CAS  PubMed  Google Scholar 

  39. Kravariti E, Russo M, Vassos E et al (2012) Linear and non-linear associations of symptom dimensions and cognitive function in first-onset psychosis. Schizophr Res 140(1):221–231

    Article  PubMed  Google Scholar 

  40. Korda AI, Andreou C, Avram M et al (2022) Chaos analysis of the brain topology in first-episode psychosis and clinical high risk patients. Front Psych 13. https://doi.org/10.3389/fpsyt.2022.965128

  41. Schultz CC, Koch K, Wagner G et al (2010) Increased parahippocampal and lingual gyrification in first-episode schizophrenia. Schizophr Res 123(2):137–144

    Article  PubMed  Google Scholar 

  42. Réjichi S, Chaabane F (2016) Brain tumor extraction using graph based classification of MRI time series for diagnostic assistance. In: 2016 International Symposium on Signal, Image, Video and Communications 21–23 November 2016

    Google Scholar 

  43. Squarcina L, Castellani U, Bellani M et al (2017) Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques. NeuroImage 145:238–245

    Article  PubMed  Google Scholar 

  44. Zhao G, Denisova K, Sehatpour P et al (2016) Fractal dimension analysis of subcortical gray matter structures in schizophrenia. PLoS One 11(5):e0155415

    Article  PubMed  PubMed Central  Google Scholar 

  45. Korda AI, Andreou C, Rogg HV et al (2022) Identification of texture MRI brain abnormalities on first-episode psychosis and clinical high-risk subjects using explainable artificial intelligence. Transl Psychiatry 12(1):481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Korda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Korda, A., Frisman, M., Andreou, C., Borgwardt, S. (2023). Nonlinear Methods for the Investigation of Psychotic Disorders. In: Stoyanov, D., Draganski, B., Brambilla, P., Lamm, C. (eds) Computational Neuroscience. Neuromethods, vol 199. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3230-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3230-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3229-1

  • Online ISBN: 978-1-0716-3230-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics