Skip to main content

Verification of Protein Changes Determined by 2D-DIGE Based Proteomics Using Immunofluorescence Microscopy

  • Protocol
  • First Online:
Difference Gel Electrophoresis

Abstract

Fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) is a key biochemical method for the comparative analysis of complex protein mixtures. The technique focuses on the identification and characterization of individual protein species following gel electrophoretic separation making it an important analytical tool of top-down proteomics. In order to verify changes in the expression levels of a particular protein, as determined by 2D-DIGE analysis, and evaluate the subcellular localization of the proteoform of interest, immunofluorescence microscopy is very well suited. This chapter describes in detail the preparation of tissue specimens and the process of cryo-sectioning, as well as incubation with primary antibodies and fluorescently labeled secondary antibodies, followed by image analysis. As illustrative examples, the co-detection of immuno-labeled dystrophin and the Y-chromosome in skeletal muscle are shown, and the localization of calbindin in the cerebellum is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arentz G, Weiland F, Oehler MK, Hoffmann P (2015) State of the art of 2D DIGE. Proteomics Clin Appl 9:277–288

    Article  PubMed  CAS  Google Scholar 

  2. Minden JS, Dowd SR, Meyer HE, Stühler K (2009) Difference gel electrophoresis. Electrophoresis 30:S156–S161

    Article  PubMed  Google Scholar 

  3. Dowling P, Zweyer M, Swandulla D, Ohlendieck K (2019) Characterization of contractile proteins from skeletal muscle using gel-based top-down proteomics. Proteomes 7:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Blundon M, Ganesan V, Redler B, Van PT, Minden JS (2019) Two-dimensional difference gel electrophoresis. Methods Mol Biol 1855:229–247

    Article  PubMed  CAS  Google Scholar 

  5. Dapic I, Baljeu-Neuman L, Uwugiaren N, Kers J, Goodlett DR, Corthals GL (2019) Proteome analysis of tissues by mass spectrometry. Mass Spectrom Rev 38:403–441

    Article  PubMed  CAS  Google Scholar 

  6. Carberry S, Zweyer M, Swandulla D, Ohlendieck K (2013) Application of fluorescence two-dimensional difference in-gel electrophoresis as a proteomic biomarker discovery tool in muscular dystrophy research. Biology (Basel) 2:1438–1464

    Google Scholar 

  7. O’Connell K, Ohlendieck K (2009) Proteomic DIGE analysis of the mitochondria-enriched fraction from aged rat skeletal muscle. Proteomics 9:5509–5524

    Article  PubMed  Google Scholar 

  8. Doran P, O’Connell K, Gannon J, Kavanagh M, Ohlendieck K (2008) Opposite pathobiochemical fate of pyruvate kinase and adenylate kinase in aged rat skeletal muscle as revealed by proteomic DIGE analysis. Proteomics 8:364–377

    Article  PubMed  CAS  Google Scholar 

  9. Capitanio D, Moriggi M, Torretta E, Barbacini P, De Palma S, Viganò A, Lochmüller H, Muntoni F, Ferlini A, Mora M, Gelfi C (2020) Comparative proteomic analyses of Duchenne muscular dystrophy and Becker muscular dystrophy muscles: changes contributing to preserve muscle function in Becker muscular dystrophy patients. J Cachexia Sarcopenia Muscle 11:547–563

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fischer AH, Jacobson KA, Rose J, Zeller R (2008) Cryosectioning tissues. CSH Protoc 2008:pdb.prot4991

    PubMed  Google Scholar 

  11. Moreno V, Smith EA, Piña-Oviedo S (2022) Fluorescent immunohistochemistry. Methods Mol Biol 2422:131–146

    Article  PubMed  Google Scholar 

  12. McNamara G, Difilippantonio M, Ried T, Bieber FR (2017) Microscopy and image analysis. Curr Protoc Hum Genet 94:4.4.1–4.4.89

    Google Scholar 

  13. Gozzetti A, Le Beau MM (2000) Fluorescence in situ hybridization: uses and limitations. Semin Hematol 37:320–333

    Article  PubMed  CAS  Google Scholar 

  14. Raykova D, Koos B, Asplund A, Gelléri M, Ivarsson Y, Danielson UH, Söderberg O (2016) Let there be light! Proteomes 4:36

    Article  PubMed Central  Google Scholar 

  15. Renz M (2013) Fluorescence microscopy – a historical and technical perspective. Cytometry A 83:767–779

    Article  PubMed  Google Scholar 

  16. De Los SC, Chang CW, Mycek MA, Cardullo RA (2015) Frap, flim, and fret: detection and analysis of cellular dynamics on a molecular scale using fluorescence microscopy. Mol Reprod Dev 82:587–604

    Article  Google Scholar 

  17. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  18. Kong J, Wang Y, Qi W, Huang M, Su R, He Z (2020) Green fluorescent protein inspired fluorophores. Adv Colloid Interf Sci 285:102286

    Article  CAS  Google Scholar 

  19. Pusch A, Boeckenhoff A, Glaser T, Kaminski T, Kirfel G, Hans M, Steinfarz B, Swandulla D, Kubitscheck U, Gieselmann V, Brüstle O, Kappler J (2010) CD44 and hyaluronan promote invasive growth of B35 neuroblastoma cells into the brain. Biochim Biophys Acta 1803:261–274

    Article  PubMed  CAS  Google Scholar 

  20. Bozhanova NG, Baranov MS, Klementieva NV, Sarkisyan KS, Gavrikov AS, Yampolsky IV, Zagaynova EV, Lukyanov SA, Lukyanov KA, Mishin AS (2017) Protein labeling for live cell fluorescence microscopy with a highly photostable renewable signal. Chem Sci 8:7138–7142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Park JG, Palmer AE (2014) Quantitative measurement of Ca2+ and Zn2+ in mammalian cells using genetically encoded fluorescent biosensors. Methods Mol Biol 1071:29–47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Suhling K, French PMW, Phillips D (2005) Time-resolved fluorescence microscopy. Photochem Photobiol Sci 4:13–22

    Article  PubMed  CAS  Google Scholar 

  23. Mantovanelli L, Gaastra BF, Poolman B (2021) Fluorescence-based sensing of the bioenergetic and physicochemical status of the cell. Curr Top Membr 88:1–54

    Article  PubMed  CAS  Google Scholar 

  24. Miller DR, Jarrett JW, Hassan AM, Dunn AK (2017) Deep tissue imaging with multiphoton fluorescence microscopy. Curr Opin Biomed Eng 4:32–39

    Article  PubMed  PubMed Central  Google Scholar 

  25. Szalai AM, Zaza C, Stefani FD (2021) Super-resolution FRET measurements. Nanoscale 13:18421–18433

    Article  PubMed  CAS  Google Scholar 

  26. Hickey SM, Ung B, Bader C, Brooks R, Lazniewska J, Johnson IRD, Sorvina A, Logan J, Martini C, Moore CR, Karageorgos L, Sweetman MJ, Brooks DA (2021) Fluorescence microscopy – an outline of hardware, biological handling, and fluorophore considerations. Cell 11:35

    Article  Google Scholar 

  27. Hassdenteufel S, Schuldiner M (2021) Show your true color: mammalian cell surface staining for tracking cellular identity in multiplexing and beyond. Curr Opin Chem Biol 66:102102

    Article  PubMed  Google Scholar 

  28. Ladouceur AM, Brown CM (2021) Fluorescence microscopy light source review. Curr Protoc 1:e243

    PubMed  Google Scholar 

  29. Mundegar RR, Franke E, Schäfer R, Zweyer M, Wernig A (2008) Reduction of high background staining by heating unfixed mouse skeletal muscle tissue sections allows for detection of thermostable antigens with murine monoclonal antibodies. J Histochem Cytochem 56:969–975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Murphy S, Henry M, Meleady P, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K (2015) Simultaneous pathoproteomic evaluation of the dystrophin-glycoprotein complex and secondary changes in the mdx-4cv mouse model of Duchenne muscular dystrophy. Biology (Basel) 4:397–423

    CAS  Google Scholar 

  31. Murphy S, Dowling P, Zweyer M, Mundegar RR, Henry M, Meleady P, Swandulla D, Ohlendieck K (2016) Proteomic analysis of dystrophin deficiency and associated changes in the aged mdx-4cv heart model of dystrophinopathy-related cardiomyopathy. J Proteome 11(145):24–36

    Article  Google Scholar 

  32. Meola G (2005) Advanced microscopic and histochemical techniques: diagnostic tools in the molecular era of myology. Eur J Histochem 49:93–96

    PubMed  CAS  Google Scholar 

  33. Zweyer M, Sabir H, Dowling P, Gargan S, Murphy S, Swandulla D, Ohlendieck K (2022) Histopathology of Duchenne muscular dystrophy in correlation with changes in proteomic biomarkers. Histol Histopathol 37:101–116

    PubMed  Google Scholar 

  34. Duan D, Goemans N, Takeda S, Mercuri E, Aartsma-Rus A (2021) Duchenne muscular dystrophy. Nat Rev Dis Primers 7:13

    Article  PubMed  Google Scholar 

  35. Ohlendieck K, Swandulla D (2021) Complexity of skeletal muscle degeneration: multi-systems pathophysiology and organ crosstalk in dystrophinopathy. Pflugers Arch 473:1813–1839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Dowling P, Murphy S, Zweyer M, Raucamp M, Swandulla D, Ohlendieck K (2019) Emerging proteomic biomarkers of X-linked muscular dystrophy. Expert Rev Mol Diagn 19:739–755

    Article  PubMed  CAS  Google Scholar 

  37. Murphy S, Ohlendieck K (2015) The biochemical and mass spectrometric profiling of the dystrophin complexome from skeletal muscle. Comput Struct Biotechnol J 14:20–27

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dowling P, Gargan S, Murphy S, Zweyer M, Sabir H, Swandulla D, Ohlendieck K (2021) The dystrophin node as integrator of cytoskeletal organization, lateral force transmission, fiber stability and cellular signaling in skeletal muscle. Proteomes 9:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Schwaller B, Meyer M, Schiffmann S (2002) ‘New’ functions for ‘old’ proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 1:241–258

    Article  PubMed  CAS  Google Scholar 

  40. Schwaller B (2020) Cytosolic Ca2+ buffers are inherently Ca2+ signal modulators. Cold Spring Harb Perspect Biol 12:a035543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Nag TC, Wadhwa S (1999) Calbindin immunoreactivity in the developing and adult human cerebellum. J Chem Neuroanat 17:1–12

    Article  PubMed  CAS  Google Scholar 

  42. Sillitoe RV, Benson MA, Blake DJ, Hawkes R (2003) Abnormal dysbindin expression in cerebellar mossy fiber synapses in the mdx mouse model of Duchenne muscular dystrophy. J Neurosci 23:6576–6585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ohlendieck K, Matsumura K, Ionasescu VV, Towbin JA, Bosch EP, Weinstein SL, Sernett SW, Campbell KP (1993) Duchenne muscular dystrophy: deficiency of dystrophin-associated proteins in the sarcolemma. Neurology 43:795–800

    Article  PubMed  CAS  Google Scholar 

  44. Ohlendieck K, Campbell KP (1991) Dystrophin-associated proteins are greatly reduced in skeletal muscle from mdx mice. J Cell Biol 115:1685–1694

    Article  PubMed  CAS  Google Scholar 

  45. Aeffner F, Faelan C, Moore SA, Moody A, Black JC, Charleston JS, Frank DE, Dworzak J, Piper JK, Ranjitkar M, Wilson K, Kanaly S, Rudmann DG, Lange H, Young GD, Milici AJ (2019) Validation of a muscle-specific tissue image analysis tool for quantitative assessment of dystrophin staining in frozen muscle biopsies. Arch Pathol Lab Med 143:197–205

    Article  PubMed  Google Scholar 

  46. Irintchev A, Langer M, Zweyer M, Theisen R, Wernig A (1997) Functional improvement of damaged adult mouse muscle by implantation of primary myoblasts. J Physiol 500:775–785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Wernig G, Janzen V, Schäfer R, Zweyer M, Knauf U, Hoegemeier O, Mundegar RR, Garbe S, Stier S, Franz T, Wernig M, Wernig A (2005) The vast majority of bone-marrow-derived cells integrated into mdx muscle fibers are silent despite long-term engraftment. Proc Natl Acad Sci U S A 102:11852–11857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Partridge TA (2013) The mdx mouse model as a surrogate for Duchenne muscular dystrophy. FEBS J 280:4177–4186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Chazotte B (2011) Labeling nuclear DNA with hoechst 33342. Cold Spring Harb Protoc 2011:pdb.prot5557

    Article  PubMed  Google Scholar 

  50. Crowley LC, Marfell BJ, Waterhouse NJ (2016) Analyzing cell death by nuclear staining with Hoechst 33342. Cold Spring Harb Protoc 2016(9). https://doi.org/10.1101/pdb.prot087205

  51. Chazotte B (2011) Labeling nuclear DNA using DAPI. Cold Spring Harb Protoc 2011:pdb.prot5556

    Article  PubMed  Google Scholar 

  52. Pigozzo SR, Da Re L, Romualdi C, Mazzara PG, Galletta E, Fletcher S, Wilton SD, Vitiello L (2013) Revertant fibers in the mdx murine model of Duchenne muscular dystrophy: an age- and muscle-related reappraisal. PLoS One 8:e72147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Chu YH, Hardin H, Zhang R, Guo Z, Lloyd RV (2019) In situ hybridization: introduction to techniques, applications and pitfalls in the performance and interpretation of assays. Semin Diagn Pathol 36:336–341

    Article  PubMed  Google Scholar 

  54. Nishioka Y (1988) Application of Y chromosomal repetitive sequences to sexing mouse embryos. Teratology 38:181–185

    Article  PubMed  CAS  Google Scholar 

  55. Doorenweerd N (2020) Combining genetics, neuropsychology and neuroimaging to improve understanding of brain involvement in Duchenne muscular dystrophy – a narrative review. Neuromuscul Disord 30:437–442

    Article  PubMed  Google Scholar 

  56. Vicari S, Piccini G, Mercuri E, Battini R, Chieffo D, Bulgheroni S, Pecini C, Lucibello S, Lenzi S, Moriconi F, Pane M, D’Amico A, Astrea G, Baranello G, Riva D, Cioni G, Alfieri P (2018) Implicit learning deficit in children with Duchenne muscular dystrophy: evidence for a cerebellar cognitive impairment? PLoS One 13:e0191164

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cyrulnik SE, Hinton VJ (2008) Duchenne muscular dystrophy: a cerebellar disorder? Neurosci Biobehav Rev 32:486–496

    Article  PubMed  CAS  Google Scholar 

  58. Murphy S, Zweyer M, Henry M, Meleady P, Mundegar RR, Swandulla D, Ohlendieck K (2015) Label-free mass spectrometric analysis reveals complex changes in the brain proteome from the mdx-4cv mouse model of Duchenne muscular dystrophy. Clin Proteomics 12:27

    Article  PubMed  PubMed Central  Google Scholar 

  59. Murphy S, Ohlendieck K (2018) Proteomic profiling of the dystrophin-deficient brain. Methods Mol Biol 1687:91–105

    Article  PubMed  CAS  Google Scholar 

  60. Schiaffino S (2018) Muscle fiber type diversity revealed by anti-myosin heavy chain antibodies. FEBS J 285:3688–3694

    Article  PubMed  CAS  Google Scholar 

  61. Dowling P, Murphy S, Ohlendieck K (2016) Proteomic profiling of muscle fibre type shifting in neuromuscular diseases. Expert Rev Proteomics 13:783–799

    Article  PubMed  CAS  Google Scholar 

  62. Mundegar RR, Zweyer M, Swandulla D (2018) Immunofluorescence microscopy for DIGE-based proteomics. Methods Mol Biol 1664:301–309

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Terry Partridge (Research Center for Genetic Medicine, George Washington University School of Medicine, Washington DC) for the generous gift of antibody p6 against dystrophin and Prof. Stephan Baader (Institute of Anatomy, University Bonn) for his support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Swandulla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zweyer, M., Ohlendieck, K., Swandulla, D. (2023). Verification of Protein Changes Determined by 2D-DIGE Based Proteomics Using Immunofluorescence Microscopy. In: Ohlendieck, K. (eds) Difference Gel Electrophoresis. Methods in Molecular Biology, vol 2596. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2831-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2831-7_30

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2830-0

  • Online ISBN: 978-1-0716-2831-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics