Skip to main content

Early Aggregation of Amyloid-β(1–42) Studied by Fluorescence Correlation Spectroscopy

  • Protocol
  • First Online:
Protein Aggregation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2551))

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease affecting cognitive and memory abilities and is believed to be linked to the formation and accumulation of neurotoxic aggregates of the Amyloid-β peptide (Aβ). In particular, it is the formation of soluble pre-fibrillar oligomers within the early stage of Aβ aggregation which is thought to represent a key step in the development of AD, thus underlining the interest in characterizing the aggregation process and the nature of these aggregates. In this context, fluorescence correlation spectroscopy (FCS) has emerged as a valuable alternative for the study of these systems in solution. Indeed, the use of FCS to study terminally labelled Aβ provides a means to detect changes in the size and concentration of initially monomeric Aβ samples by monitoring these fluorescently labelled species freely diffusing in solution with single-molecule resolution. Herein, we show how to employ FCS to study the early aggregation process of Aβ(1–42) and how this can be used to estimate the critical concentration for oligomer formation and to characterize the aggregates formed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Scheltens P, Blennow K, Breteler MMB et al (2016) Alzheimer’s disease. Lancet 388(10043):505–517. https://doi.org/10.1016/S0140-6736(15)01124-1

    Article  CAS  PubMed  Google Scholar 

  2. Prince M, Bryce R, Albanese E et al (2013) The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement 9(1):63–75.e2. https://doi.org/10.1016/j.jalz.2012.11.007

    Article  PubMed  Google Scholar 

  3. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353

    Article  CAS  PubMed  Google Scholar 

  4. Sun X, Chen W, Wang Y (2015) β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease. Front Pharmacol 6:1–9. https://doi.org/10.3389/fphar.2015.00221

    Article  CAS  Google Scholar 

  5. Lansbury PT, Lashuel HA (2006) A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443(7113):774–779

    Article  CAS  PubMed  Google Scholar 

  6. Freire S, de Araujo MH, Al-Soufi W et al (2014) Photophysical study of Thioflavin T as fluorescence marker of amyloid fibrils. Dyes Pigm 110(0):97–105. https://doi.org/10.1016/j.dyepig.2014.05.004

    Article  CAS  Google Scholar 

  7. D’Amico M, Di Carlo MG, Groenning M et al (2012) Thioflavin T promotes Aβ (1–40) amyloid fibrils formation. J Phys Chem Lett 3(12):1596–1601

    Article  PubMed  Google Scholar 

  8. Reinke AA, Abulwerdi GA, Gestwicki JE (2010) Quantifying prefibrillar Amyloids in vitro by using a “Thioflavin-Like” spectroscopic method. ChemBioChem 11(13):1889–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rodríguez-Rodríguez C, Sánchez de Groot N, Rimola A et al (2009) Design, selection, and characterization of thioflavin-based intercalation compounds with metal chelating properties for application in Alzheimer’s disease. J Am Chem Soc 131(4):1436–1451

    Article  PubMed  Google Scholar 

  10. Freire S, Rodríguez-Prieto F, Ríos-Rodríguez MC et al (2015) Towards ratiometric sensing of amyloid fibrils in vitro. Chem Eur J 21(8):3425–3434. https://doi.org/10.1002/chem.201406110

  11. Quinn SD, Dalgarno PA, Cameron RT et al (2014) Real-time probing of β-amyloid self-assembly and inhibition using fluorescence self-quenching between neighbouring dyes. Mol BioSyst 10(1):34–44. https://doi.org/10.1039/C3MB70272C

    Article  CAS  PubMed  Google Scholar 

  12. Chang C, Althaus JC, Carruthers CJL et al (2013) Synergistic interactions between Alzheimer’s Aβ40 and Aβ42 on the surface of primary neurons revealed by single molecule microscopy. PLoS One 8(12):e82139. https://doi.org/10.1371/journal.pone.0082139

  13. Chang C, Edwald E, Veatch S et al (2018) Interactions of amyloid-β peptides on lipid bilayer studied by single molecule imaging and tracking. Biochim Biophys Acta Biomembranes 1860(9):1616–1624. https://doi.org/10.1016/j.bbamem.2018.03.017

    Article  CAS  PubMed  Google Scholar 

  14. Novo M, Freire S, Al-Soufi W (2018) Critical aggregation concentration for the formation of early Amyloid-β (1-42) oligomers. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-19961-3

  15. Yong W, Lomakin A, Kirkitadze MD et al (2002) Structure determination of micelle-like intermediates in amyloid beta -protein fibril assembly by using small angle neutron scattering. Proc Natl Acad Sci USA 99(1):150–154. https://doi.org/10.1073/pnas.012584899

    Article  CAS  PubMed  Google Scholar 

  16. Stine WB Jr, Dahlgren KN, Krafft GA et al (2003) In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J Biol Chem 278(13):11612–11622. https://doi.org/10.1074/jbc.M210207200

    Article  CAS  PubMed  Google Scholar 

  17. Stine WB, Jungbauer L, Yu C et al (2011) Preparing synthetic Ab in different aggregation states. Methods Mol Biol 670:13–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nichols MR, Moss MA, Reed DK et al (2005) Amyloid-β protofibrils differ from Amyloid-β aggregates induced in dilute Hexafluoroisopropanol in stability and morphology. J Biol Chem 280(4):2471–2480. https://doi.org/10.1074/jbc.M410553200

    Article  CAS  PubMed  Google Scholar 

  19. Petrásek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94(4):1437–1448

    Article  PubMed  Google Scholar 

  20. Gendron PO, Avaltroni F, Wilkinson KJ (2008) Diffusion coefficients of several rhodamine derivatives as determined by pulsed field gradient-nuclear magnetic resonance and fluorescence correlation spectroscopy. J Fluoresc 18(6):1093–1101. https://doi.org/10.1007/s10895-008-0357-7

    Article  CAS  PubMed  Google Scholar 

  21. Kapusta P (2010) Absolute diffusion coefficients: compilation of reference data for FCS calibration. Picoquant Application Notes

    Google Scholar 

Download references

Acknowledgments

We thank the Ministerio de Ciencia e Innovacion, the Ministerio de Economia y Competitividad, and the Xunta de Galicia for their financial support (CTQ2010-21369, CTQ2014-59020-R, GPC2013-052, R2014/051, ED431B 2016/024, ED431D R2016/007, ED431B 2019/18). S.F. thanks the Xunta de Galicia for her research scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Novo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Novo, M., Pérez-González, C., Freire, S., Al-Soufi, W. (2023). Early Aggregation of Amyloid-β(1–42) Studied by Fluorescence Correlation Spectroscopy. In: Cieplak, A.S. (eds) Protein Aggregation. Methods in Molecular Biology, vol 2551. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2597-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2597-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2596-5

  • Online ISBN: 978-1-0716-2597-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics