Skip to main content

Long-Term Imaging and Electrophysiology of Single Suprachiasmatic Nucleus Neurons

  • Protocol
  • First Online:
Circadian Clocks

Part of the book series: Neuromethods ((NM,volume 186))

  • 702 Accesses

Abstract

The suprachiasmatic nucleus (SCN) of the hypothalamus governs circadian (ca. 24 h) rhythms in behavior via neuronal firing rhythms generated by the endogenous molecular circadian clocks within individual SCN cells. To study the cellular basis of circadian behavior, one can examine individual SCN neurons, which exhibit molecular and electrical circadian oscillations in vitro. Our goal is to review the methods by which single SCN neurons can be cultured and studied over circadian time scales using bioluminescence imaging and multi-electrode recording.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buhr ED, Takahashi JS (2013) Molecular components of the mammalian circadian clock. Handb Exp Pharmacol (217):3–27. https://doi.org/10.1007/978-3-642-25950-0_1

  2. Inouye ST, Kawamura H (1979) Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. PNAS 76(11):5962–5966. https://doi.org/10.1073/pnas.76.11.5962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Green DJ, Gillette R (1982) Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res 245(1):198–200. https://doi.org/10.1016/0006-8993(82)90361-4

    Article  CAS  PubMed  Google Scholar 

  4. Groos G, Hendriks J (1982) Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro. Neurosci Lett 34(3):283–288. https://doi.org/10.1016/0304-3940(82)90189-6

    Article  CAS  PubMed  Google Scholar 

  5. Shibata S, Oomura Y, Kita H, Hattori K (1982) Circadian rhythmic changes of neuronal activity in the suprachiasmatic nucleus of the rat hypothalamic slice. Brain Res 247(1):154–158. https://doi.org/10.1016/0006-8993(82)91041-1

    Article  CAS  PubMed  Google Scholar 

  6. Akasu T, Shoji S, Hasuo H (1993) Inward rectifier and low-threshold calcium currents contribute to the spontaneous firing mechanism in neurons of the rat suprachiasmatic nucleus. Pflugers Arch 425(1–2):109–116. https://doi.org/10.1007/bf00374510

    Article  CAS  PubMed  Google Scholar 

  7. Silver R, Lehman MN, Gibson M, Gladstone WR, Bittman EL (1990) Dispersed cell suspensions of fetal SCN restore circadian rhythmicity in SCN-lesioned adult hamsters. Brain Res 525(1):45–58. https://doi.org/10.1016/0006-8993(90)91319-c

    Article  CAS  PubMed  Google Scholar 

  8. Murakami N, Takamure M, Takahashi K, Utunomiya K, Kuroda H, Etoh T (1991) Long-term cultured neurons from rat suprachiasmatic nucleus retain the capacity for circadian oscillation of vasopressin release. Brain Res 545(1):347–350. https://doi.org/10.1016/0006-8993(91)91312-o

    Article  CAS  PubMed  Google Scholar 

  9. Watanabe K, Koibuchi N, Ohtake H, Yamaoka S (1993) Circadian rhythms of vasopressin release in primary cultures of rat suprachiasmatic nucleus. Brain Res 624(1):115–120. https://doi.org/10.1016/0006-8993(93)90067-w

    Article  CAS  PubMed  Google Scholar 

  10. Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14(4):697–706. https://doi.org/10.1016/0896-6273(95)90214-7

    Article  CAS  PubMed  Google Scholar 

  11. Liu AC, Welsh DK, Ko CH, Tran HG, Zhang EE, Priest AA, Buhr ED, Singer O, Meeker K, Verma IM, Doyle FJ, Takahashi JS, Kay SA (2007) Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129(3):605–616. https://doi.org/10.1016/j.cell.2007.02.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M, Okamura H (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302(5649):1408–1412. https://doi.org/10.1126/science.1089287

    Article  CAS  PubMed  Google Scholar 

  13. Herzog ED, Geusz ME, Khalsa SB, Straume M, Block GD (1997) Circadian rhythms in mouse suprachiasmatic nucleus explants on multimicroelectrode plates. Brain Res 757(2):285–290. https://doi.org/10.1016/s0006-8993(97)00337-5

    Article  CAS  PubMed  Google Scholar 

  14. Honma S, Shirakawa T, Katsuno Y, Namihira M, K-i H (1998) Circadian periods of single suprachiasmatic neurons in rats. Neurosci Lett 250(3):157–160. https://doi.org/10.1016/s0304-3940(98)00464-9

    Article  CAS  PubMed  Google Scholar 

  15. Liu C, Weaver DR, Strogatz SH, Reppert SM (1997) Cellular construction of a circadian clock: period determination in the suprachiasmatic nuclei. Cell 91(6):855–860. https://doi.org/10.1016/s0092-8674(00)80473-0

    Article  CAS  PubMed  Google Scholar 

  16. Herzog ED, Aton SJ, Numano R, Sakaki Y, Tei H (2004) Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons. J Biol Rhythm 19(1):35–46. https://doi.org/10.1177/0748730403260776

    Article  Google Scholar 

  17. Nuddell V, Masood H, Romero O, Cohen SE, Noguchi T, Golden SS (2016) Luciferase reporters for mammals in circadian research. https://youtu.be/9Ub9s4oLQ7Y. Accessed 31 Jan 2021.

  18. Millar AJ, Carre IA, Strayer CA, Chua NH, Kay SA (1995) Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267(5201):1161–1163. https://doi.org/10.1126/science.7855595

    Article  CAS  PubMed  Google Scholar 

  19. Zhao H, Doyle TC, Coquoz O, Kalish F, Rice BW, Contag CH (2005) Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J Biomed Opt 10(4):41210. https://doi.org/10.1117/1.2032388

    Article  CAS  PubMed  Google Scholar 

  20. Leclerc GM, Boockfor FR, Faught WJ, Frawley LS (2000) Development of a destabilized firefly luciferase enzyme for measurement of gene expression. BioTechniques 29(3):590–591. https://doi.org/10.2144/00293rr02

    Article  CAS  PubMed  Google Scholar 

  21. Troy T, Jekic-McMullen D, Sambucetti L, Rice B (2004) Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging 3(1):15353500200403196. https://doi.org/10.1162/15353500200403196

    Article  Google Scholar 

  22. Rathbun CM, Prescher JA (2017) Bioluminescent probes for imaging biology beyond the culture dish. Biochemistry 56(39):5178. https://doi.org/10.1021/acs.biochem.7b00435

    Article  CAS  PubMed  Google Scholar 

  23. Wilsbacher LD, Yamazaki S, Herzog ED, Song E-J, Radcliffe LA, Abe M, Block G, Spitznagel E, Menaker M, Takahashi JS (2002) Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice in vivo. Proc Natl Acad Sci U S A 99(1):489–494. https://doi.org/10.1073/pnas.012248599

    Article  CAS  PubMed  Google Scholar 

  24. Gammon ST, Leevy WM, Gross S, Gokel GW, Piwnica-Worms D (2006) Spectral unmixing of multicolored bioluminescence emitted from heterogeneous biological sources. Anal Chem 78(5):1520–1527. https://doi.org/10.1021/ac051999h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yao Z, Zhang BS, Prescher JA (2018) Advances in bioluminescence imaging: new probes from old recipes. Curr Opin Chem Biol 45:148–156. https://doi.org/10.1016/j.cbpa.2018.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nishide S, Honma S, Honma K-i (2018) Two coupled circadian oscillations regulate Bmal1-ELuc and Per2-SLR2 expression in the mouse suprachiasmatic nucleus. Sci Rep 8(14765):1–12. https://doi.org/10.1038/s41598-018-32516-w

    Article  CAS  Google Scholar 

  27. Nishide S-Y, Honma S, Nakajima Y, Ikeda M, Baba K, Ohmiya Y, Honma K-I (2006) New reporter system for Per1 and Bmal1 expressions revealed self-sustained circadian rhythms in peripheral tissues. Genes Cells 11(10):1173–1182. https://doi.org/10.1111/j.1365-2443.2006.01015.x

    Article  CAS  PubMed  Google Scholar 

  28. Noguchi T, Michihata T, Nakamura W, Takumi T, Shimizu R, Yamamoto M, Ikeda M, Ohmiya Y, Nakajima Y (2010) Dual-color luciferase mouse directly demonstrates coupled expression of two clock genes. Biochemistry 49(37):8053–8061. https://doi.org/10.1021/bi100545h

    Article  CAS  PubMed  Google Scholar 

  29. Ono D, Honma S, Nakajima Y, Kuroda S, Enoki R, Honma K-I (2017) Dissociation of Per1 and Bmal1 circadian rhythms in the suprachiasmatic nucleus in parallel with behavioral outputs. Proc Natl Acad Sci U S A 114(18):3699–3708. https://doi.org/10.1073/pnas.1613374114

    Article  CAS  Google Scholar 

  30. Cheng H-YM, Alvarez-Saavedra M, Dziema H, Choi YS, Li A, Obrietan K (2009) Segregation of expression of mPeriod gene homologs in neurons and glia: possible divergent roles of mPeriod1 and mPeriod2 in the brain. Hum Mol Genet 18(16):3110. https://doi.org/10.1093/hmg/ddp252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shan Y, Abel JH, Li Y, Izumo M, Cox KH, Jeong B, Yoo S-H, Olson DP, Doyle FJ, Takahashi JS (2020) Dual-color single-cell imaging of the suprachiasmatic nucleus reveals a circadian role in network synchrony. Neuron 108(1):164–179.e167. https://doi.org/10.1016/j.neuron.2020.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Noguchi T, Leise TL, Kingsbury NJ, Diemer T, Wang LL, Henson MA, Welsh DK (2017) Calcium circadian rhythmicity in the suprachiasmatic nucleus: cell autonomy and network modulation. eNeuro 4(4). https://doi.org/10.1523/eneuro.0160-17.2017

  33. Hirata Y, Enoki R, Kuribayashi-Shigetomi K, Oda Y, Honma S, Honma K-I (2019) Circadian rhythms in Per1, PER2 and Ca2+ of a solitary SCN neuron cultured on a microisland. Sci Rep 9(1):1–12. https://doi.org/10.1038/s41598-019-54654-5

    Article  CAS  Google Scholar 

  34. Ikeda M, Sugiyama T, Wallace CS, Gompf HS, Yoshioka T, Miyawaki A, Allen CN (2003) Circadian dynamics of cytosolic and nuclear Ca2+ in single suprachiasmatic nucleus neurons. Neuron 38(2):253–263. https://doi.org/10.1016/s0896-6273(03)00164-8

    Article  CAS  PubMed  Google Scholar 

  35. van den Pol AN, Finkbeiner SM, Cornell-Bell AH (1992) Calcium excitability and oscillations in suprachiasmatic nucleus neurons and glia in vitro. J Neurosci 12(7):2648–2664. https://doi.org/10.1523/jneurosci.12-07-02648.1992

    Article  PubMed  PubMed Central  Google Scholar 

  36. Enoki R, Oda Y, Mieda M, Ono D, Honma S, Honma K-I (2017) Synchronous circadian voltage rhythms with asynchronous calcium rhythms in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 114(12):2476–2485. https://doi.org/10.1073/pnas.1616815114

    Article  CAS  Google Scholar 

  37. Patton AP, Edwards MD, Smyllie NJ, Hamnett R, Chesham JE, Brancaccio M, Maywood ES, Hastings MH (2020) The VIP-VPAC2 neuropeptidergic axis is a cellular pacemaking hub of the suprachiasmatic nucleus circadian circuit. Nat Commun 11(1):3394. https://doi.org/10.1038/s41467-020-17110-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. O’Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH (2008) cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320(5878):949–953. https://doi.org/10.1126/science.1152506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoo S-H, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong H-K, Oh WJ, Yoo OJ, Menaker M, Takahashi JS (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101(15):5339–5346. https://doi.org/10.1073/pnas.0308709101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Inagaki N, Honma S, Ono D, Tanahashi Y, K-i H (2007) Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity. Proc Natl Acad Sci U S A 104(18):7664–7669. https://doi.org/10.1073/pnas.0607713104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288(5466):682–685. https://doi.org/10.1126/science.288.5466.682

    Article  CAS  PubMed  Google Scholar 

  42. He P, Hirata M, Yamauchi N, Hashimoto S, Hattori M-A (2007) The disruption of circadian clockwork in differentiation cell from rat reproductive tissues as identified by in vitro real-time monitoring. J Endocrinol 193(3):413–420. https://doi.org/10.1677/joe-07-0044

    Article  CAS  PubMed  Google Scholar 

  43. Webb AB, Angelo N, Huettner JE, Herzog ED (2009) Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons. Proc Natl Acad Sci U S A 106(38):16493. https://doi.org/10.1073/pnas.0902768106

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pennartz CM, De Jeu MT, Geurtsen AM, Sluiter AA, Hermes ML (1998) Electrophysiological and morphological heterogeneity of neurons in slices of rat suprachiasmatic nucleus. J Physiol 506(Pt):3. https://doi.org/10.1111/j.1469-7793.1998.775bv.x

    Article  Google Scholar 

  45. Mazuski C, Abel JH, Chen SP, Hermanstyne TO, Jones JR, Simon T, Doyle FJ, Herzog ED (2018) Entrainment of circadian rhythms depends on firing rates and neuropeptide release of VIP SCN neurons. Neuron 99(3):555–5635. https://doi.org/10.1016/j.neuron.2018.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Herzog ED, Takahashi JS, Block GD (1998) Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nat Neurosci 1(8):708–713. https://doi.org/10.1038/3708

    Article  CAS  PubMed  Google Scholar 

  47. Nakamura W, Honma S, Shirakawa T, Honma K (2001) Regional pacemakers composed of multiple oscillator neurons in the rat suprachiasmatic nucleus. Eur J Neurosci 14(4):666–674. https://doi.org/10.1046/j.0953-816x.2001.01684.x

    Article  CAS  PubMed  Google Scholar 

  48. Baughman R, Huettner JE, Jones K, Khan A (1991) Cell culture of neocortex and basal forebrain from postnatal rats. In: Banker G, Goslin K (eds) Culturing nerve cells. MIT Press, Cambridge, MA, pp 227–249

    Google Scholar 

  49. Geusz ME (2001) Bioluminescence imaging of gene expression in living cells and tissues. In: Methods in cellular imaging. Springer, New York, pp 395–408. https://doi.org/10.1007/978-1-4614-7513-2_23

    Chapter  Google Scholar 

  50. Welsh DK, Kay SA (2005) Bioluminescence imaging in living organisms. Curr Opin Biotechnol 16(1):73–78. https://doi.org/10.1016/j.copbio.2004.12.006

    Article  CAS  PubMed  Google Scholar 

  51. Welsh DK, Noguchi T (2012) Cellular bioluminescence imaging. Cold Spring Harb Protoc 2012(8):pdb.top070607. https://doi.org/10.1101/pdb.top070607

    Article  PubMed  Google Scholar 

  52. Belle MDC, Baño-Otalora B, Piggins HD (2021) Perforated multi-electrode array recording in hypothalamic brain slices. In: Circadian clocks. Humana, New York, pp 263–285. https://doi.org/10.1007/978-1-0716-0381-9_20

    Chapter  Google Scholar 

  53. Müller J, Ballini M, Livi P, Chen Y, Radivojevic M, Shadmani A, Viswam V, Jones IL, Fiscella M, Diggelmann R, Stettler A, Frey U, Bakkum DJ, Hierlemann A (2015) High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab Chip 15(13):2767–2780. https://doi.org/10.1039/c5lc00133a

    Article  PubMed  PubMed Central  Google Scholar 

  54. Welsh DK (1995) Circadian clock neurons in culture. Harvard University, Cambridge, MA

    Google Scholar 

  55. Buhr ED, Yoo S-H, Takahashi JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330(6002):379–385. https://doi.org/10.1126/science.1195262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jones JR, Tackenberg MC, McMahon DG (2015) Manipulating circadian clock neuron firing rate resets molecular circadian rhythms and behavior. Nat Neurosci 18(3):373–375. https://doi.org/10.1038/nn.3937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brancaccio M, Maywood ES, Chesham JE, Loudon ASI, Hastings MH (2013) A Gq-Ca2+ axis controls circuit-level encoding of circadian time in the suprachiasmatic nucleus. Neuron 78(4):714. https://doi.org/10.1016/j.neuron.2013.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Leise TL (2021) Computational analysis of PER2::LUC imaging data. In: Circadian clocks. Humana, New York, pp 295–302. https://doi.org/10.1007/978-1-0716-0381-9_22

    Chapter  Google Scholar 

  59. Potter SM, DeMarse TB (2001) A new approach to neural cell culture for long-term studies. J Neurosci Methods 110(1–2):17–24. https://doi.org/10.1016/s0165-0270(01)00412-5

    Article  CAS  PubMed  Google Scholar 

  60. Lefebvre B, Yger P, Marre O (2016) Recent progress in multi-electrode spike sorting methods. BioRXiv. https://doi.org/10.1101/086991

  61. Buccino AP, Hurwitz CL, Garcia S, Magland J, Siegle JH, Hurwitz R, Hennig MH (2020) SpikeInterface, a unified framework for spike sorting. elife. https://doi.org/10.7554/eLife.61834

  62. Sa W, Ma D, Zhao M, Xie L, Wu Q, Gou L, Zhu C, Fan Y, Wang H, Yan J (2020) Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nat Neurosci 23(3):456–467. https://doi.org/10.1038/s41593-020-0586-x

    Article  CAS  Google Scholar 

  63. Bando Y, Grimm C, Cornejo VH, Yuste R (2019) Genetic voltage indicators. BMC Biol 17(1):71. https://doi.org/10.1186/s12915-019-0682-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Spira ME, Shmoel N, Huang S-HM, Erez H (2018) Multisite attenuated intracellular recordings by extracellular multielectrode arrays, a perspective. Front Neurosci 12:212. https://doi.org/10.3389/fnins.2018.00212

    Article  PubMed  PubMed Central  Google Scholar 

  65. Abbott J, Ye T, Krenek K, Gertner RS, Ban S, Kim Y, Qin L, Wu W, Park H, Ham D (2020) A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat Biomed Eng 4(2):232–241. https://doi.org/10.1038/s41551-019-0455-7

    Article  CAS  PubMed  Google Scholar 

  66. Liu R, Chen R, Elthakeb AT, Lee SH, Hinckley S, Khraiche ML, Scott J, Pre D, Hwang Y, Tanaka A, Ro YG, Matsushita AK, Dai X, Soci C, Biesmans S, James A, Nogan J, Jungjohann KL, Pete DV, Webb DB, Zou Y, Bang AG, Dayeh SA (2017) High density individually addressable nanowire arrays record intracellular activity from primary rodent and human stem cell derived neurons. Nano Lett 17(5):2757–2764. https://doi.org/10.1021/acs.nanolett.6b04752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Aton SJ, Herzog ED (2005) Come together, right...now: synchronization of rhythms in a mammalian circadian clock. Neuron 48(4):531–534. https://doi.org/10.1016/j.neuron.2005.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Feeney KA, Putker M, Brancaccio M, O’Neill JS (2016) In-depth characterization of firefly luciferase as a reporter of circadian gene expression in mammalian cells. J Biol Rhythm 31(6):540–550. https://doi.org/10.1177/0748730416668898

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen J. Tonsfeldt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tonsfeldt, K.J., Welsh, D.K. (2022). Long-Term Imaging and Electrophysiology of Single Suprachiasmatic Nucleus Neurons. In: Hirota, T., Hatori, M., Panda, S. (eds) Circadian Clocks. Neuromethods, vol 186. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2577-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2577-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2576-7

  • Online ISBN: 978-1-0716-2577-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics