Skip to main content

Electrophysiological Approaches to Studying the Suprachiasmatic Nucleus

  • Protocol
  • First Online:
Circadian Clocks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2130))

Abstract

In mammals, the part of the nervous system responsible for most circadian behavior can be localized to a bilaterally paired structure in the hypothalamus known as the suprachiasmatic nucleus (SCN). Understanding the mammalian circadian system will require a detailed multilevel analysis of neural SCN circuits ex vivo and in vivo. Many of the techniques and approaches that are used for the analysis of the circuitry driving circadian oscillations in the SCN are similar to those employed in other brain regions. There is, however, one fundamental difference that needs to be taken into consideration, that is, the physiological, cell, and molecular properties of SCN neurons vary with the time of day. In this chapter, we will consider the preparations and electrophysiological techniques that we have used to analyze the SCN circuit focusing on the acute brain slice and intact, freely moving animal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schaap J, Pennartz CM, Meijer JH (2003) Electrophysiology of the circadian pacemaker in mammals. Chronobiol Int 20:171–188

    Article  PubMed  Google Scholar 

  2. Colwell CS (2011) Linking neural activity and molecular oscillations in the SCN. Nat Rev Neurosci 12:553–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Meijer JH, Michel S (2015) Neurophysiological analysis of the suprachiasmatic nucleus: a challenge at multiple levels. Methods Enzymol 552:75–102

    Article  CAS  PubMed  Google Scholar 

  5. Meijer JH, Watanabe K, Schaap J, Albus H, Detari L (1998) Light responsiveness of the suprachiasmatic nucleus: long-term multiunit and single-unit recordings in freely moving rats. J Neurosci 18:9078–9087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van Oosterhout F, Fisher SP, van Diepen HC, Watson TS, Houben T, VanderLeest HT et al (2012) Ultraviolet light provides a major input to non-image-forming light detection in mice. Curr Biol 22:1397–1402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. van Diepen HC, Foster RG, Meijer JH (2015) A colourful clock. PLoS Biol 13:e1002160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. van Oosterhout F, Lucassen EA, Houben T, vanderLeest HT, Antle MC, Meijer JH (2012) Amplitude of the SCN clock enhanced by the behavioral activity rhythm. PLoS One 7:e39693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kudo T, Block GD, Colwell CS (2015) The circadian clock gene Period1 connects the molecular clock to neural activity in the suprachiasmatic nucleus. ASN Neuro 7:1759091415610761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Meijer JH, Colwell CS, Rohling JH, Houben T, Michel S (2012) Dynamic neuronal network organization of the circadian clock and possible deterioration in disease. Prog Brain Res 199:143–162

    Article  PubMed  Google Scholar 

  11. Farajnia S, Deboer T, Rohling JH, Meijer JH, Michel S (2014) Aging of the suprachiasmatic clock. Neuroscientist 20:44–55

    Article  PubMed  Google Scholar 

  12. Itri J, Colwell CS (2003) Regulation of inhibitory synaptic transmission by vasoactive intestinal peptide (VIP) in the mouse suprachiasmatic nucleus. J Neurophysiol 90:1589–1597

    Article  CAS  PubMed  Google Scholar 

  13. Choi HJ, Lee CJ, Schroeder A, Kim YS, Jung SH, Kim JS et al (2008) Excitatory actions of GABA in the suprachiasmatic nucleus. J Neurosci 28:5450–5459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuhlman SJ, McMahon DG (2006) Encoding the ins and outs of circadian pacemaking. J Biol Rhythm 21:470–481

    Article  CAS  Google Scholar 

  15. Colwell CS (2000) Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus. Eur J Neurosci 12:571–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ikeda M, Sugiyama T, Wallace CS, Gompf HS, Yoshioka T, Miyawaki A et al (2003) Circadian dynamics of cytosolic and nuclear Ca2+ in single suprachiasmatic nucleus neurons. Neuron 38:253–263

    Article  CAS  PubMed  Google Scholar 

  17. O'Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH (2008) cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320:949–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brancaccio M, Maywood ES, Chesham JE, Loudon AS, Hastings MH (2013) A Gq-Ca2+ axis controls circuit-level encoding of circadian time in the suprachiasmatic nucleus. Neuron 78:714–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abe M, Herzog ED, Yamazaki S, Straume M, Tei H, Sakaki Y et al (2002) Circadian rhythms in isolated brain regions. J Neurosci 22:350–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lamont EW, Robinson B, Stewart J, Amir S (2005) The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proc Natl Acad Sci U S A 102:4180–4184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang LM, Dragich JM, Kudo T, Odom IH, Welsh DK, O'Dell TJ et al (2009) Expression of the circadian clock gene Period2 in the hippocampus: possible implications for synaptic plasticity and learned behaviour. ASN Neuro 1:e00012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Granados-Fuentes D, Ben-Josef G, Perry G, Wilson DA, Sullivan-Wilson A, Herzog ED (2011) Daily rhythms in olfactory discrimination depend on clock genes but not the suprachiasmatic nucleus. J Biol Rhythm 26:552–560

    Article  Google Scholar 

  23. Gillette MU (1986) The suprachiasmatic nuclei: circadian phase-shifts induced at the time of hypothalamic slice preparation are preserved in vitro. Brain Res 379:176–181

    Article  CAS  PubMed  Google Scholar 

  24. vanderLeest HT, Vansteensel MJ, Duindam H, Michel S, Meijer JH (2009) Phase of the electrical activity rhythm in the SCN in vitro not influenced by preparation time. Chronobiol Int 26:1075–1089

    Article  PubMed  Google Scholar 

  25. Colwell CS (2001) NMDA-evoked calcium transients and currents in the suprachiasmatic nucleus: gating by the circadian system. Eur J Neurosci 13:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Itri JN, Michel S, Vansteensel MJ, Meijer JH, Colwell CS (2005) Fast delayed rectifier potassium current is required for circadian neural activity. Nat Neurosci 8:650–656

    Article  CAS  PubMed  Google Scholar 

  27. Itri JN, Vosko AM, Schroeder A, Dragich JM, Michel S, Colwell CS (2010) Circadian regulation of A-type potassium currents in the suprachiasmatic nucleus. J Neurophysiol 103:632–640

    Article  CAS  PubMed  Google Scholar 

  28. Michel S, Itri J, Han JH, Gniotczynski K, Colwell CS (2006) Regulation of glutamatergic signalling by PACAP in the mammalian suprachiasmatic nucleus. BMC Neurosci 7:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. MacVicar BA (1984) Infrared video microscopy to visualize neurons in the in vitro brain slice preparation. J Neurosci Methods 12:133–139

    Article  CAS  PubMed  Google Scholar 

  30. Dodt HU, Zieglgansberger W (1994) Infrared videomicroscopy: a new look at neuronal structure and function. Trends Neurosci 17:453–458

    Article  CAS  PubMed  Google Scholar 

  31. Farajnia S, van Westering TL, Meijer JH, Michel S (2014) Seasonal induction of GABAergic excitation in the central mammalian clock. Proc Natl Acad Sci U S A 111:9627–9632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Farajnia S, Meijer JH, Michel S (2015) Age-related changes in large-conductance calcium-activated potassium channels in mammalian circadian clock neurons. Neurobiol Aging 36:2176–2183

    Article  CAS  PubMed  Google Scholar 

  33. Irwin RP, Allen CN (2007) Calcium response to retinohypothalamic tract synaptic transmission in suprachiasmatic nucleus neurons. J Neurosci 27:11748–11757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  35. Neher E (1995) The use of fura-2 for estimating Ca2+ buffers and Ca2+ fluxes. Neuropharmacology 34:1423–1442

    Article  CAS  PubMed  Google Scholar 

  36. Groos G, Hendriks J (1982) Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro. Neurosci Lett 34:283–288

    Article  CAS  PubMed  Google Scholar 

  37. Green DJ, Gillette R (1982) Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res 245:198–200

    Article  CAS  PubMed  Google Scholar 

  38. Jiang ZG, Yang Y, Liu ZP, Allen CN (1997) Membrane properties and synaptic inputs of suprachiasmatic nucleus neurons in rat brain slices. J Physiol 499(1):141–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Albus H, Bonnefont X, Chaves I, Yasui A, Doczy J, van der Horst GT et al (2002) Cryptochrome-deficient mice lack circadian electrical activity in the suprachiasmatic nuclei. Curr Biol 12:1130–1133

    Article  CAS  PubMed  Google Scholar 

  40. Brown TM, Banks JR, Piggins HD (2006) A novel suction electrode recording technique for monitoring circadian rhythms in single and multiunit discharge from brain slices. J Neurosci Methods 156:173–181

    Article  PubMed  Google Scholar 

  41. VanderLeest HT, Houben T, Michel S, Deboer T, Albus H, Vansteensel MJ et al (2007) Seasonal encoding by the circadian pacemaker of the SCN. Curr Biol 17:468–473

    Article  CAS  PubMed  Google Scholar 

  42. Kim YI, Dudek FE (1991) Intracellular electrophysiological study of suprachiasmatic nucleus neurons in rodents: excitatory synaptic mechanisms. J Physiol 444:269–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim YI, Choi HJ, Colwell CS (2006) Brain-derived neurotrophic factor regulation of N-methyl-D-aspartate receptor-mediated synaptic currents in suprachiasmatic nucleus neurons. J Neurosci Res 84:1512–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mirsky HP, Liu AC, Welsh DK, Kay SA, Doyle FJ 3rd (2009) A model of the cell-autonomous mammalian circadian clock. Proc Natl Acad Sci U S A 106:11107–11112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vasalou C, Herzog ED, Henson MA (2009) Small-world network models of intercellular coupling predict enhanced synchronization in the suprachiasmatic nucleus. J Biol Rhythm 24:243–254

    Article  Google Scholar 

  46. Hu K, Meijer JH, Shea SA, vanderLeest HT, Pittman-Polletta B, Houben T et al (2012) Fractal patterns of neural activity exist within the suprachiasmatic nucleus and require extrinsic network interactions. PLoS One 7:e48927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hamad MI, Krause M, Wahle P (2015) Improving AM ester calcium dye loading efficiency. J Neurosci Methods 240:48–60

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Michel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Michel, S., Nakamura, T.J., Meijer, J.H., Colwell, C.S. (2021). Electrophysiological Approaches to Studying the Suprachiasmatic Nucleus. In: Brown, S.A. (eds) Circadian Clocks. Methods in Molecular Biology, vol 2130. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0381-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0381-9_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0380-2

  • Online ISBN: 978-1-0716-0381-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics