Skip to main content

Hepatocyte-Directed Delivery of Lipid-Encapsulated Small Interfering RNA

  • Protocol
  • First Online:
Hepatocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2544))

Abstract

Lipid formulations for cell transfection are among the most efficient systems for nucleic acid delivery. During the COVID-19 pandemic, lipid-encapsulated RNA (lipid nanoparticles, LNP) has succeeded as a superior vaccine. Moreover, other similar lipid nanocarriers for siRNA are approved and many are on the pipelines. While lipid encapsulation required several devices for the mixing of components, lipoplex technology allows to rapidly mix nucleic acids and positively charged lipids for cell transfection. In vivo, hepatocytes are important target cells of lipid formulated RNAi. This chapter describes the state-of-the-art lipoplex and LPN manufacturing for treating primary hepatocytes with lipid formulations. Furthermore, protocols for isolating murine hepatocytes and for transfecting these cells with pharmaceutically relevant lipid formulations are provided and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leber N, Nuhn L, Zentel R (2017) Cationic nanohydrogel particles for therapeutic oligonucleotide delivery. Macromol Biosci 17(10). https://doi.org/10.1002/mabi.201700092

  2. Liu Q, Lyu Z, Yu Y, Zhao ZA, Hu S, Yuan L, Chen G, Chen H (2017) Synthetic glycopolymers for highly efficient differentiation of embryonic stem cells into neurons: lipo- or not? ACS Appl Mater Interfaces 9(13):11518–11527. https://doi.org/10.1021/acsami.7b01397

    Article  CAS  PubMed  Google Scholar 

  3. Xue H, Lin F, Tan H, Zhu ZQ, Zhang ZY, Zhao L (2016) Overrepresentation of IL-10-expressing B cells suppresses cytotoxic CD4+ T cell activity in HBV-induced hepatocellular carcinoma. PLoS One 11(5):e0154815. https://doi.org/10.1371/journal.pone.0154815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Woitok MM, Zoubek ME, Doleschel D, Bartneck M, Mohamed MR, Kiessling F, Lederle W, Trautwein C, Cubero FJ (2020) Lipid-encapsulated siRNA for hepatocyte-directed treatment of advanced liver disease. Cell Death Dis 11(5):343. https://doi.org/10.1038/s41419-020-2571-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M, Jayaprakash KN, Jayaraman M, Rajeev KG, Cantley WL, Dorkin JR, Butler JS, Qin L, Racie T, Sprague A, Fava E, Zeigerer A, Hope MJ, Zerial M, Sah DW, Fitzgerald K, Tracy MA, Manoharan M, Koteliansky V, Fougerolles A, Maier MA (2010) Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther 18(7):1357–1364. https://doi.org/10.1038/mt.2010.85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Suhr OB, Coelho T, Buades J, Pouget J, Conceicao I, Berk J, Schmidt H, Waddington-Cruz M, Campistol JM, Bettencourt BR, Vaishnaw A, Gollob J, Adams D (2015) Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study. Orphanet J Rare Dis 10:109. https://doi.org/10.1186/s13023-015-0326-6

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A (2020) Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics 12(2). https://doi.org/10.3390/pharmaceutics12020102

  8. Bartneck M (2021) Lipid nanoparticle formulations for targeting leukocytes with therapeutic RNA in liver fibrosis. Adv Drug Deliv Rev 173:70–88. https://doi.org/10.1016/j.addr.2021.03.009

    Article  CAS  PubMed  Google Scholar 

  9. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10(2):doi:10.3390/pharmaceutics10020057

    Article  Google Scholar 

  10. Cheng X, Lee RJ (2016) The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv Drug Deliv Rev 99(Pt A):129–137. https://doi.org/10.1016/j.addr.2016.01.022

    Article  CAS  PubMed  Google Scholar 

  11. Scioli Montoto S, Muraca G, Ruiz ME (2020) Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front Mol Biosci 7:587997. https://doi.org/10.3389/fmolb.2020.587997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Delehedde C, Even L, Midoux P, Pichon C, Perche F (2021) Intracellular routing and recognition of lipid-based mRNA nanoparticles. Pharmaceutics 13(7):doi:10.3390/pharmaceutics13070945

    Article  Google Scholar 

  13. Wahane A, Waghmode A, Kapphahn A, Dhuri K, Gupta A, Bahal R (2020) Role of lipid-based and polymer-based non-viral vectors in nucleic acid delivery for next-generation gene therapy. Molecules 25(12):doi:10.3390/molecules25122866

    Article  Google Scholar 

  14. Kim M, Jeong M, Hur S, Cho Y, Park J, Jung H, Seo Y, Woo HA, Nam KT, Lee K, Lee H (2021) Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver. Sci Adv 7(9). https://doi.org/10.1126/sciadv.abf4398

Download references

Acknowledgments

This research was supported by the MINECO Retos PID2020-117941RB-IOO, SAF2016-78711, and SAF2017-87919-R, MINECO PID2019-104878RB-100AEI/10.13039/501100011033, by Comunidad de Madrid (S2017/BMD-3727 EXOHEP-CM and Y2018/NMT-4949 NanoLiver-CM), and co-funded by European Structural and Investment Fund, ERAB Ref. EA 18/14, AMMF 2018/117, UCM-25-2019, the German Research Foundation (SFB/TRR57/P04, SFB 1382-403224013/A02 and DFG NE 2128/2-1), and COST Action CA17112. YAN and FJC are Ramón y Cajal Researcher RYC-2015-17438 and RYC-2014-15242, respectively. FJC is a Gilead Liver Research 2018. The research group belongs to the validated Research Groups Ref. 970935 ¨Liver Pathophysiology¨, 920631 ¨Lymphocyte immunobiology¨, 920361 “Inmunogenética e inmunología de las mucosas” and IBL-6 (imas12-associated).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Cubero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Morán, L., Woitok, M.M., Bartneck, M., Cubero, F.J. (2022). Hepatocyte-Directed Delivery of Lipid-Encapsulated Small Interfering RNA. In: Tanimizu, N. (eds) Hepatocytes. Methods in Molecular Biology, vol 2544. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2557-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2557-6_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2556-9

  • Online ISBN: 978-1-0716-2557-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics