Skip to main content

Development and Validation of Antibodies Targeting Site-Specific Histone Methylation

  • Protocol
  • First Online:
Histone Methyltransferases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2529))

  • 1063 Accesses

Abstract

The development of specific anti-modification antibodies as research tools has revolutionized the way histone methylation is studied. Lack of stringent quality controls, however, led to the development of nonspecific antibodies, compromising their use. In this chapter, we provide a series of protocols that collectively will help those studying histone methylation to develop and thoroughly validate high-end sequence-specific and methylation-dependent antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849. https://doi.org/10.1038/nrm1761

    Article  CAS  PubMed  Google Scholar 

  2. Jambhekar A, Dhal A, Shi Y (2019) Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 20:625–641. https://doi.org/10.1038/s41580-019-0151-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sierra F, Lichtler A, Marashi F et al (1982) Organization of human histone genes. Proc Natl Acad Sci U S A 79:1795–1799. https://doi.org/10.1073/pnas.79.6.1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marzluff WF, Gongidi P, Woods KR et al (2002) The human and mouse replication-dependent histone genes. Genomics 80:487–498. https://doi.org/10.1006/geno.2002.6850

    Article  CAS  PubMed  Google Scholar 

  5. Chan JC, Maze I (2020) Nothing is yet set in (hi)stone: novel post-translational modifications regulating chromatin function. Trends Biochem Sci 45:829–844. https://doi.org/10.1016/j.tibs.2020.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705. https://doi.org/10.1016/j.cell.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  7. Yang W, Ernst P (2017) Distinct functions of H3K4 methyltransferases in normal and malignant hematopoiesis. Curr Opin Hematol 24:322–328. https://doi.org/10.1097/MOH.0000000000000346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation and biological impact. Mol Cell 48:1–31. https://doi.org/10.1016/j.molcel.2012.11.006

    Article  CAS  Google Scholar 

  9. Perez-Burgos L, Peters AHFM, Opravil S et al (2003) Generation and characterization of methyl-lysine histone antibodies. Methods Enzymol 76:234–254

    Article  Google Scholar 

  10. Rice JC, Allis CD (2001) Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol 13:263–273. https://doi.org/10.1016/s0955-0674(00)00208-8

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360. https://doi.org/10.1101/gad.927301

    Article  CAS  PubMed  Google Scholar 

  12. Rice JC, Briggs SD, Ueberheide B et al (2003) Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12:1591–1598. https://doi.org/10.1016/S1097-2765(03)00479-9

    Article  CAS  PubMed  Google Scholar 

  13. Di Lorenzo A, Bedford MT (2011) Histone arginine methylation. FEBS Lett 585:2024–2031. https://doi.org/10.1016/j.febslet.2010.11.010

    Article  CAS  PubMed  Google Scholar 

  14. Luger K, Rechsteiner TJ, Richmond TJ (1999) Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol Biol 119:1–16

    CAS  PubMed  Google Scholar 

  15. O’Neil LP, Turner BM (2003) Immunoprecipitation of native chromatin: NChIP. Methods 31:76–82. https://doi.org/10.1016/s1046-2023(03)00090-2

    Article  Google Scholar 

  16. Dignam JD, Martin PL, Shastry BS, Roeder RG (1983) Eukaryotic gene transcription with purified components. Methods Enzymol 101:582–598. https://doi.org/10.1101/pdb.prot5330

    Article  CAS  PubMed  Google Scholar 

  17. Kudithipudi S, Kusevic D, Weirich S, Jeltsch A (2014) Specificity analysis of protein lysine methyltransferases using SPOT peptide arrays. J Vis Exp 1–8:e52203. https://doi.org/10.3791/52203

    Article  CAS  Google Scholar 

  18. Mauser R, Jeltsch A (2019) Application of modified histone peptide arrays in chromatin research. Arch Biochem Biophys 661:31–38. https://doi.org/10.1016/j.abb.2018.10.019

    Article  CAS  PubMed  Google Scholar 

  19. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. https://doi.org/10.1016/0003-9861(59)90090-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Robert Schneider for his support and people from his laboratory for helpful discussions. We would like to thank Andrew Bannister for critical reading an earlier version of the manuscript. This work was supported by the Agence Nationale de la Recherche (CoreAc).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Daujat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zorro Shahidian, L., Daujat, S. (2022). Development and Validation of Antibodies Targeting Site-Specific Histone Methylation. In: Margueron, R., Holoch, D. (eds) Histone Methyltransferases. Methods in Molecular Biology, vol 2529. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2481-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2481-4_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2480-7

  • Online ISBN: 978-1-0716-2481-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics