Skip to main content

Detection and Quantification of Histone Methyltransferase Activity In Vitro

  • Protocol
  • First Online:
Histone Methyltransferases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2529))

Abstract

Histone methyltransferases (HMTs) catalyze the methylation of lysine and arginine residues in histone as well as nonhistone substrates. In vitro histone methyltransferase assays have been instrumental in identifying HMTs, and they continue to be invaluable tools for the study of these important enzymes, revealing novel substrates and modes of regulation.

Here we describe a universal protocol to examine HMT activity in vitro that can be adapted to a range of HMTs, substrates, and experimental objectives. We provide protocols for the detection of activity based on incorporation of 3H-labeled methyl groups from S-adenosylmethionine (SAM), methylation-specific antibodies, and quantification of the reaction product S-adenosylhomocysteine (SAH).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13(5):343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128(4):707–719

    Article  CAS  PubMed  Google Scholar 

  3. Zhou VW, Goren A, Bernstein BE (2011) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12(1):7–18

    Article  PubMed  CAS  Google Scholar 

  4. Musselman CA, Lalonde M-E, Côté J, Kutateladze TG (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 19(12):1218–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T (2010) Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143(3):470–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S, Butter F, Lee KK, Olsen JV, Hyman AA, Stunnenberg HG, Mann M (2010) Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142(6):967–980

    Article  CAS  PubMed  Google Scholar 

  7. Zhang T, Cooper S, Brockdorff N (2015) The interplay of histone modifications - writers that read. EMBO Rep 16(11):1467–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Murray K (1964) The occurrence of epsilon-N-methyl lysine in histones. Biochemistry 3:10–15

    Article  CAS  PubMed  Google Scholar 

  9. Kim S, Paik WK (1965) Studies on the origin of epsilon-N-methyl-L-lysine in protein. J Biol Chem 240(12):4629–4634

    Article  CAS  PubMed  Google Scholar 

  10. Murn J, Shi Y (2017) The winding path of protein methylation research: milestones and new frontiers. Nat Rev Mol Cell Biol 18(8):517–527

    Article  CAS  PubMed  Google Scholar 

  11. Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406(6796):593–599

    Article  CAS  PubMed  Google Scholar 

  12. Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT, Aswad DW, Stallcup MR (1999) Regulation of transcription by a protein methyltransferase. Science 284(5423):2174–2177

    Article  CAS  PubMed  Google Scholar 

  13. Helin K, Dhanak D (2013) Chromatin proteins and modifications as drug targets. Nature 502(7472):480–488

    Article  CAS  PubMed  Google Scholar 

  14. Richart L, Margueron R (2020) Drugging histone methyltransferases in cancer. Curr Opin Chem Biol 56:51–62

    Article  CAS  PubMed  Google Scholar 

  15. Piunti A, Shilatifard A (2021) The roles of Polycomb repressive complexes in mammalian development and cancer. Nat Rev Mol Cell Biol 22(5):326–345

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Trojer P, Xu C-F, Cheung P, Kuo A, Drury WJ, Qiao Q, Neubert TA, Xu R-M, Gozani O, Reinberg D (2009) The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate. J Biol Chem 284(49):34283–34295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luo M (2012) Current chemical biology approaches to interrogate protein methyltransferases. ACS Chem Biol 7(3):443–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Drake KM, Watson VG, Kisielewski A, Glynn R, Napper AD (2014) A sensitive luminescent assay for the histone methyltransferase NSD1 and other SAM-dependent enzymes. Assay Drug Dev Technol 12(5):258–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duchin S, Vershinin Z, Levy D, Aharoni A (2015) A continuous kinetic assay for protein and DNA methyltransferase enzymatic activities. Epigenetics Chromatin 8(1):56–59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hsiao K, Zegzouti H, Goueli SA (2016) Methyltransferase-Glo: a universal, bioluminescent and homogenous assay for monitoring all classes of methyltransferases. Epigenomics 8(3):321–339

    Article  CAS  PubMed  Google Scholar 

  21. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298(5595):1039–1043

    Article  CAS  PubMed  Google Scholar 

  22. Nishioka K, Rice JC, Sarma K, Erdjument-Bromage H, Werner J, Wang Y, Chuikov S, Valenzuela P, Tempst P, Steward R, Lis JT, Allis CD, Reinberg D (2002) PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell 9(6):1201–1213

    Article  CAS  PubMed  Google Scholar 

  23. Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of Zeste protein. Genes Dev 16(22):2893–2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Doyon Y, Côté J (2016) Preparation and analysis of native chromatin-modifying complexes. Methods Enzymol 573:303–318

    Article  CAS  PubMed  Google Scholar 

  25. Voigt P, Reinberg D (2011) Histone tails: ideal motifs for probing epigenetics through chemical biology approaches. Chembiochem 12(2):236–252

    Article  CAS  PubMed  Google Scholar 

  26. Müller MM, Muir TW (2015) Histones: at the crossroads of peptide and protein chemistry. Chem Rev 115(6):2296–2349

    Article  PubMed  CAS  Google Scholar 

  27. Dyer PN, Edayathumangalam RS, White CL, Bao Y, Chakravarthy S, Muthurajan UM, Luger K (2004) Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol 375:23–44

    Article  CAS  PubMed  Google Scholar 

  28. Luger K, Rechsteiner TJ, Flaus AJ, Waye MM, Richmond TJ (1997) Characterization of nucleosome core particles containing histone proteins made in bacteria. J Mol Biol 272(3):301–311

    Article  CAS  PubMed  Google Scholar 

  29. Thåström A, Lowary PT, Widlund HR, Cao H, Kubista M, Widom J (1999) Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. J Mol Biol 288(2):213–229

    Article  PubMed  Google Scholar 

  30. Simon RH, Felsenfeld G (1979) A new procedure for purifying histone pairs H2A + H2B and H3 + H4 from chromatin using hydroxylapatite. Nucleic Acids Res 6(2):689–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Voigt P, LeRoy G, Drury WJ, Zee BM, Son J, Beck DB, Young NL, Garcia BA, Reinberg D (2012) Asymmetrically modified nucleosomes. Cell 151(1):181–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmitges FW, Prusty AB, Faty M, Stützer A, Lingaraju GM, Aiwazian J, Sack R, Hess D, Li L, Zhou S, Bunker RD, Wirth U, Bouwmeester T, Bauer A, Ly-Hartig N, Zhao K, Chan H, Gu J, Gut H, Fischle W, Müller J, Thomä NH (2011) Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell 42(3):330–341

    Article  CAS  PubMed  Google Scholar 

  33. Yuan W, Xu M, Huang C, Liu N, Chen S, Zhu B (2011) H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J Biol Chem 286(10):7983–7989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jacob Y, Voigt P (2018) In vitro assays to measure histone methyltransferase activity using different chromatin substrates. Methods Mol Biol 1675:345–360

    Article  CAS  PubMed  Google Scholar 

  35. Trievel RC, Beach BM, Dirk LMA, Houtz RL, Hurley JH (2002) Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell 111(1):91–103

    Article  CAS  PubMed  Google Scholar 

  36. Zhang X, Tamaru H, Khan SI, Horton JR, Keefe LJ, Selker EU, Cheng X (2002) Structure of the Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell 111(1):117–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kipp DR, Quinn CM, Fortin PD (2013) Enzyme-dependent lysine deprotonation in EZH2 catalysis. Biochemistry 52(39):6866–6878

    Article  CAS  PubMed  Google Scholar 

  38. Richon VM, Johnston D, Sneeringer CJ, Jin L, Majer CR, Elliston K, Jerva LF, Scott MP, Copeland RA (2011) Chemogenetic analysis of human protein methyltransferases. Chem Biol Drug Des 78(2):199–210

    Article  CAS  PubMed  Google Scholar 

  39. Simon MD, Chu F, Racki LR, de la Cruz CC, Burlingame AL, Panning B, Narlikar GJ, Shokat KM (2007) The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128(5):1003–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen Z, Grzybowski AT, Ruthenburg AJ (2014) Traceless semisynthesis of a set of histone 3 species bearing specific lysine methylation marks. Chembiochem 15(14):2071–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eickbush TH, Moudrianakis EN (1978) The histone core complex: an octamer assembled by two sets of protein-protein interactions. Biochemistry 17(23):4955–4964

    Article  CAS  PubMed  Google Scholar 

  42. Yuan W, Wu T, Fu H, Dai C, Wu H, Liu N, Li X, Xu M, Zhang Z, Niu T, Han Z, Chai J, Zhou XJ, Gao S, Zhu B (2012) Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science 337(6097):971–975

    Article  CAS  PubMed  Google Scholar 

  43. Stützer A, Liokatis S, Kiesel A, Schwarzer D, Sprangers R, Söding J, Selenko P, Fischle W (2016) Modulations of DNA contacts by linker histones and post-translational modifications determine the mobility and modifiability of Nucleosomal H3 tails. Mol Cell 61(2):247–259

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Pablo De Ioannes and Karim-Jean Armache for helpful discussions and advice on SAH quantification methods. Work in the Voigt lab is supported by the Wellcome Trust ([104175/Z/14/Z], Sir Henry Dale Fellowship to P.V.) and through funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC-STG grant agreement No. 639253 to P.V.). The Wellcome Centre for Cell Biology is supported by core funding from the Wellcome Trust [203149].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Voigt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Idigo, N.J., Voigt, P. (2022). Detection and Quantification of Histone Methyltransferase Activity In Vitro. In: Margueron, R., Holoch, D. (eds) Histone Methyltransferases. Methods in Molecular Biology, vol 2529. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2481-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2481-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2480-7

  • Online ISBN: 978-1-0716-2481-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics