Skip to main content

Genetic, Genomic, and Imaging Approaches to Dissect the Role of Polycomb Group Epigenetic Regulators in Mice

  • Protocol
  • First Online:
Histone Methyltransferases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2529))

Abstract

Among the most important histone methyltransferases for metazoan development are EZH1/2 and their homologs, which methylate histone H3 lysine 27 and act as part of a highly conserved set of chromatin regulators called Polycomb Group (PcG) proteins. Reaching a precise understanding of the roles of PcG proteins in the orchestration of differentiation and the maintenance of cell identity requires a variety of genetic and molecular approaches. Here, we present a full suite of methods for the study of PcG proteins in early murine development, including mutant strain generation, embryonic stem cell derivation, epigenomic profiling, and immunofluorescence and in situ hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    Article  CAS  Google Scholar 

  2. Pirrotta V, Rastelli L (1994) White gene expression, repressive chromatin domains and homeotic gene regulation in Drosophila. Bioessays 16:549–556

    Article  CAS  Google Scholar 

  3. Boyer LA, Plath K, Zeitlinger J et al (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349–353

    Article  CAS  Google Scholar 

  4. Almeida M, Pintacuda G, Masui O et al (2017) PCGF3/5-PRC1 initiates Polycomb recruitment in X chromosome inactivation. Science 356:1081–1084

    Article  CAS  Google Scholar 

  5. Yakushiji-Kaminatsui N, Kondo T, Hironaka K-I et al (2018) Variant PRC1 competes with retinoic acid-related signals to repress Meis2 in the mouse distal forelimb bud. Development 145:dev166348

    Article  Google Scholar 

  6. Morey L, Santanach A, Blanco E et al (2015) Polycomb regulates mesoderm cell fate-specification in embryonic stem cells through activation and repression mechanisms. Cell Stem Cell 17:300–315

    Article  CAS  Google Scholar 

  7. Iwama A, Oguro H, Negishi M et al (2004) Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21:843–851

    Article  CAS  Google Scholar 

  8. Ezhkova E, Pasolli HA, Parker JS et al (2009) Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136:1122–1135

    Article  CAS  Google Scholar 

  9. Chiacchiera F, Rossi A, Jammula S et al (2016) Polycomb complex PRC1 preserves intestinal stem cell identity by sustaining Wnt/β-catenin transcriptional activity. Cell Stem Cell 18:91–103

    Article  CAS  Google Scholar 

  10. Cao R, Wang L, Wang H et al (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298:1039–1043

    Article  CAS  Google Scholar 

  11. Fischle W, Wang Y, Jacobs SA et al (2003) Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev 17:1870–1881

    Article  CAS  Google Scholar 

  12. Wang H, Wang L, Erdjument-Bromage H et al (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431:873–878

    Article  CAS  Google Scholar 

  13. de Napoles M, Mermoud JE, Wakao R et al (2004) Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7:663–676

    Article  Google Scholar 

  14. Gao Z, Zhang J, Bonasio R et al (2012) PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell 45:344–356

    Article  CAS  Google Scholar 

  15. Tavares L, Dimitrova E, Oxley D et al (2012) RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 148:664–678

    Article  CAS  Google Scholar 

  16. Healy E, Mucha M, Glancy E et al (2019) PRC2.1 and PRC2.2 synergize to coordinate H3K27 Trimethylation. Mol Cell 76:437–452.e6

    Article  CAS  Google Scholar 

  17. Højfeldt JW, Hedehus L, Laugesen A et al (2019) Non-core subunits of the PRC2 complex are collectively required for its target-site specificity. Mol Cell 76:423–436.e3

    Article  Google Scholar 

  18. Blackledge NP, Farcas AM, Kondo T et al (2014) Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157:1445–1459

    Article  CAS  Google Scholar 

  19. Fursova NA, Blackledge NP, Nakayama M et al (2019) Synergy between variant PRC1 complexes defines Polycomb-mediated gene repression. Mol Cell 74:1020–1036.e8

    Article  CAS  Google Scholar 

  20. Endoh M, Endo TA, Shinga J et al (2017) PCGF6-PRC1 suppresses premature differentiation of mouse embryonic stem cells by regulating germ cell-related genes. Elife 6:e21064

    Article  Google Scholar 

  21. Ying Q-L, Wray J, Nichols J et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    Article  CAS  Google Scholar 

  22. Kaya-Okur HS, Wu SJ, Codomo CA et al (2019) CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun 10:1930

    Article  Google Scholar 

  23. Kaya-Okur HS, Janssens DH, Henikoff JG et al (2020) Efficient low-cost chromatin profiling with CUT&Tag. Nat Protoc 15:3264–3283

    Article  CAS  Google Scholar 

  24. Eto H, Kishi Y, Yakushiji-Kaminatsui N et al (2020) The Polycomb group protein Ring1 regulates dorsoventral patterning of the mouse telencephalon. Nat Commun 11:5709

    Article  CAS  Google Scholar 

  25. Kondo T, Isono K, Kondo K et al (2014) Polycomb potentiates meis2 activation in midbrain by mediating interaction of the promoter with a tissue-specific enhancer. Dev Cell 28:94–101

    Article  CAS  Google Scholar 

  26. Picelli S, Björklund AK, Reinius B et al (2014) Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res 24:2033–2040

    Article  CAS  Google Scholar 

  27. Buenrostro JD, Wu B, Litzenburger UM et al (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523:486–490

    Article  CAS  Google Scholar 

  28. Meers MP, Bryson TD, Henikoff JG et al (2019) Improved CUT&RUN chromatin profiling tools. Elife 8:e46314

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Hiroki Sugishita for discussion and advice on CUT&Tag modifications. This work was supported by the Japan Agency for Medical Research and Development (AMED-CREST) (13417643 to H.K.), Grant-in-Aid for Scientific Research on Innovative Areas (JP19H05745 to H.K.), JSPS KAKENHI (JP19K22695, JP21K09784 to N.Y.-K.), and Takeda Science Foundation (to N.Y.-K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nayuta Yakushiji-Kaminatsui or Haruhiko Koseki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yakushiji-Kaminatsui, N., Kondo, T., Ohinata, Y., Takano, J., Koseki, H. (2022). Genetic, Genomic, and Imaging Approaches to Dissect the Role of Polycomb Group Epigenetic Regulators in Mice. In: Margueron, R., Holoch, D. (eds) Histone Methyltransferases. Methods in Molecular Biology, vol 2529. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2481-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2481-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2480-7

  • Online ISBN: 978-1-0716-2481-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics