Skip to main content

High-Pressure Freezing and Transmission Electron Microscopy to Visualize the Ultrastructure of the C. auris Cell Wall

  • Protocol
  • First Online:
Candida auris

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2517))

Abstract

Transmission electron microscopy (TEM) is the main technique used to study the ultrastructure of biological samples. Chemical fixation was considered the main method for preserving samples for TEM; however, it is a relatively slow method of fixation and can result in morphological alterations. Cryofixation using high-pressure freezing (HPF) overcomes the limitations of chemical fixation by preserving samples instantly. Here, we describe our HPF methods optimized for visualizing Candida auris at the ultrastructural level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sabatini DD, Bensch K, Barrnett RJ (1963) Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol 17:19–58. https://doi.org/10.1083/jcb.17.1.19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Sabatini DD, Miller F, Barrnett RJ (1964) Aldehyde fixation for morphological and enzyme histochemical studies with the electron microscope. J Histochem Cytochem 12:57–71. https://doi.org/10.1177/12.2.57

    Article  PubMed  CAS  Google Scholar 

  3. Giddings TH, O’Toole ET, Morphew M et al (2001) Using rapid freeze and freeze-substitution for the preparation of yeast cells for electron microscopy and three-dimensional analysis. Methods Cell Biol 67:27–42. https://doi.org/10.1016/s0091-679x(01)67003-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Sawaguchi A (2013) Advantages of high-pressure freezing technique for fine structural electron microscopy. Plant Morphol 25:7–10

    Article  Google Scholar 

  5. Korogod N, Petersen CCH, Knott GW (2015) Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. eLife 4:e05793. https://doi.org/10.7554/eLife.05793

    Article  PubMed Central  Google Scholar 

  6. Steinbrecht RA, Müller M (1987) Freeze-substitution and freeze-drying. In: Cryotechniques in biological electron microscopy. Springer, Berlin, Heidelberg, pp 149–172

    Chapter  Google Scholar 

  7. Kellenberger E, Johansen R, Maeder M et al (1992) Artefacts and morphological changes during chemical fixation. J Microsc 168(Pt 2):181–201

    Article  CAS  Google Scholar 

  8. O’Donnell KL, McLaughlin DJ (1984) Ultrastructure of meiosis in ustilago maydis. Mycologia 76:468–485

    Article  Google Scholar 

  9. Hammill TM (1974) Septal pore structure in trichoderma saturnisporum. Am J Bot 61(7):767–771. https://doi.org/10.1002/j.1537-2197.1974.tb12299.x

    Article  Google Scholar 

  10. Collinge AJ, Markham P (1982) Hyphal tip ultrastructure of Aspergillus nidulans and Aspergillus giganteus and possible implications of woronin bodies close to the hyphal apex of the latter species. Protoplasma 113:209–213. https://doi.org/10.1007/BF01280909

    Article  Google Scholar 

  11. Dahl R, Staehelin LA (1989) High pressure freezing for the preservation of biological structure: theory and practice. J Electron Microsc Tech 13:165–174. https://doi.org/10.1002/jemt.1060130305

    Article  PubMed  CAS  Google Scholar 

  12. McDonald K (1999) High-pressure freezing for preservation of high resolution fine structure and antigenicity for immunolabelling. In: Nasser Hajibagheri MA (ed) Electron microscopy methods and protocols. Humana Press, Totowa, pp 77–97

    Chapter  Google Scholar 

  13. Moor H (1987) Theory and practice of high pressure freezing. In: Cryotechniques in biological electron microscopy. Springer-Verlag, Heidelberg, pp 175–191

    Chapter  Google Scholar 

  14. Shimoni E, Muller M (2008) On optimizing high-pressure freezing: from heat transfer theory to a new microbiopsy device. J Microsc 192:236–247

    Article  Google Scholar 

  15. Murray S (2008) Chapter 1 high pressure freezing and freeze substitution of Schizosaccharomyces pombe and Saccharomyces cerevisiae for TEM. In: Allen T (ed) Introduction to electron microscopy for biologists. Elsevier, Manchester, pp 3–17

    Chapter  Google Scholar 

  16. Nicolas M-T, Bassot J-M (1993) Freeze substitution after fast-freeze fixation in preparation for immunocytochemistry. Microsc Res Tech 24:474–487

    Article  CAS  Google Scholar 

  17. Villiger W (1991) Lowicryl resins. In: Hayat M (ed) Colloidal gold: principles, methods and applications. Academic Press, New York, pp 59–71

    Chapter  Google Scholar 

  18. Newman G, Hobot J (1993) Handling resin blocks. In: Resin microscopy and on-section immunocytochemistry. Springer, Berlin, Heidelberg, pp 101–105

    Chapter  Google Scholar 

  19. Hoch H (1986) Freeze-substitution of fungi. In: Aldrich H, Todd W (eds) Ultrastructure techniques for microorganisms. Springer, Boston, pp 183–212

    Chapter  Google Scholar 

  20. Mims CW, Celio GJ, Richardson EA (2003) The use of high pressure freezing and freeze substitution to study host-pathogen interactions in fungal diseases of plants. Microsc Microanal 9:522–531. https://doi.org/10.1017/S1431927603030587

    Article  PubMed  CAS  Google Scholar 

  21. Walker LA, Gow NA, Munro CA (2013) Elevated chitin content reduces the susceptibility of Candida species to caspofungin. Antimicrob Agents Chemother 57:146–154

    Article  CAS  Google Scholar 

  22. Walker L, Sood P, Lenardon MD et al (2018) The viscoelastic properties of the fungal cell wall allow traffic of ambisome as intact liposome vesicles. mBio 9:1–15. https://doi.org/10.1128/mBio.02383-17

    Article  Google Scholar 

  23. Walker CA, Gomez BL, Mora-Montes HM et al (2010) Melanin externalization in Candida albicans depends on cell wall chitin structures. Eukaryot Cell 9:1329–1342

    Article  CAS  Google Scholar 

  24. Gow NA, Netea MG, Munro CA et al (2007) Immune recognition of Candida albicans beta-glucan by dectin-1. J Infect Dis 196:1565–1571

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the Microscopy and Histology Core Facility at the University of Aberdeen for expert assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise A. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Milne, G., Walker, L.A. (2022). High-Pressure Freezing and Transmission Electron Microscopy to Visualize the Ultrastructure of the C. auris Cell Wall. In: Lorenz, A. (eds) Candida auris. Methods in Molecular Biology, vol 2517. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2417-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2417-3_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2416-6

  • Online ISBN: 978-1-0716-2417-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics