Skip to main content

Random and Positional Immobilization of Multi-enzyme Systems

  • Protocol
  • First Online:
Multienzymatic Assemblies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2487))

Abstract

In recent years, three key techniques including random co-immobilization, positional co-immobilization, and compartmentalization for multi-enzyme immobilization were extensively considered. Herein, we investigate random co-immobilization and positional co-immobilization techniques for multi-enzyme systems in detail. We describe randomly co-immobilized glucose oxidase (GOx) and horseradish peroxidase (HRP) on reduced graphene oxide (rGO) as the most used methods. Materials and methods are presented in terms of preparation of GO and rGO as well as enzyme immobilization procedure. Moreover, the principles of positional co-immobilization have been reviewed, and the relevant methods based on microfluidic systems and DNA structure considering HRP and GOx enzymes have been individually studied. It is believed that the benefits of using the methods associated with random and specifically positional immobilized multi-enzyme systems include not only enhanced cascade enzymatic activity via manipulated surface such as microfluidic systems (including porous materials) and DNA structure but also improved enzyme stability and ease of recovery for recycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khoshnevisan K, Poorakbar E, Baharifar H et al (2019) Recent advances of cellulase immobilization onto magnetic nanoparticles: an update review. Magnetochemistry. 5(2):36

    Article  CAS  Google Scholar 

  2. Khoshnevisan K, Vakhshiteh F, Barkhi M et al (2017) Immobilization of cellulase enzyme onto magnetic nanoparticles: applications and recent advances. Mol Catal 442:66–73

    Article  CAS  Google Scholar 

  3. Cacicedo ML, Manzo RM, Municoy S et al (2019) Chapter 7 - Immobilized enzymes and their applications. In: Singh RS, Singhania RR, Pandey A et al (eds) Biomass, biofuels, biochemicals. Elsevier, Amsterdam, pp 169–200

    Google Scholar 

  4. Bilal M, Zhao Y, Noreen S et al (2019) Modifying bio-catalytic properties of enzymes for efficient biocatalysis: a review from immobilization strategies viewpoint. Biocatal Biotransformation 37:159–182

    Article  CAS  Google Scholar 

  5. Ren S, Li C, Jiao X et al (2019) Recent progress in multienzymes co-immobilization and multienzyme system applications. Chem Eng J 373:1254–1278

    Article  CAS  Google Scholar 

  6. Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235

    Article  CAS  PubMed  Google Scholar 

  7. Sheldon RA, Woodley JM (2018) Role of biocatalysis in sustainable chemistry. Chem Rev 118:801–838

    Article  CAS  PubMed  Google Scholar 

  8. Xu K, Chen X, Zheng R et al (2020) Immobilization of multi-enzymes on support materials for efficient biocatalysis. Front Bioeng Biotechnol 8:660

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wahab RA, Elias N, Abdullah F et al (2020) On the taught new tricks of enzymes immobilization: an all-inclusive overview. React Funct Polym 152:104613

    Article  CAS  Google Scholar 

  10. Krajewska B (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzym Microb Technol 35:126–139

    Article  CAS  Google Scholar 

  11. Sulaiman S, Mokhtar MN, Naim MN et al (2015) A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Appl Biochem Biotechnol 175:1817–1842

    Article  CAS  PubMed  Google Scholar 

  12. Zucca P, Fernandez-Lafuente R, Sanjust E (2016) Agarose and its derivatives as supports for enzyme immobilization. Molecules 21:1577

    Article  PubMed Central  CAS  Google Scholar 

  13. Ashly PC, Joseph MJ, Mohanan PV (2011) Activity of diastase α-amylase immobilized on polyanilines (PANIs). Food Chem 127:1808–1813

    Article  CAS  Google Scholar 

  14. Porto MDA, dos Santos JP, Hackbart H et al (2019) Immobilization of α-amylase in ultrafine polyvinyl alcohol (PVA) fibers via electrospinning and their stability on different substrates. Int J Biol Macromol 126:834–841

    Article  CAS  PubMed  Google Scholar 

  15. Thomson T (2018) Polyurethane immobilization of cells and biomolecules: medical and environmental applications. John Wiley & Sons, Inc., Hoboken, NJ

    Book  Google Scholar 

  16. Wei Q, Xu M, Liao C et al (2016) Printable hybrid hydrogel by dual enzymatic polymerization with superactivity. Chem Sci 7:2748–2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smith S, Goodge K, Delaney M et al (2020) A comprehensive review of the covalent immobilization of biomolecules onto electrospun nanofibers. Nanomaterials (Basel) 10:1–39

    Article  CAS  Google Scholar 

  18. Zdarta J, Meyer AS, Jesionowski T et al (2018) A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts. 8:92

    Article  CAS  Google Scholar 

  19. Klermund L, Poschenrieder ST, Castiglione K (2017) Biocatalysis in polymersomes: improving multienzyme cascades with incompatible reaction steps by compartmentalization. ACS Catal 7:3900–3904

    Article  CAS  Google Scholar 

  20. Zhang J, Zhou X, Wang D et al (2013) Studies on the co-immobilized GOD/CAT on cross-linked chitosan microsphere modified by lysine. J Mol Catal B Enzym 97:80–86

    Article  CAS  Google Scholar 

  21. Rocha-Martin J, Velasco-Lozano S, Guisán JM et al (2014) Oxidation of phenolic compounds catalyzed by immobilized multi-enzyme systems with integrated hydrogen peroxide production. Green Chem 16:303–311

    Article  CAS  Google Scholar 

  22. Chauhan N, Pundir CS (2011) Co-immobilization of cholesterol esterase, cholesterol oxidase and peroxidase on PVC strip for serum cholesterol determination. Anal Methods 3:1360–1365

    Article  CAS  Google Scholar 

  23. Hartmann M, Kostrov X (2013) Immobilization of enzymes on porous silicas – benefits and challenges. Chem Soc Rev 42:6277–6289

    Article  CAS  PubMed  Google Scholar 

  24. Zucca P, Sanjust E (2014) Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules. 19:14139–14194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Amirnejat S, Movahedi F, Masrouri H et al (2013) Silica nanoparticles immobilized benzoylthiourea ferrous complex as an efficient and reusable catalyst for one-pot synthesis of benzopyranopyrimidines. J Mol Catal A Chem 378:135–141

    Article  CAS  Google Scholar 

  26. Homaei AA, Sariri R, Vianello F et al (2013) Enzyme immobilization: an update. J Chem Biol 6:185–205

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhao F, Li H, Jiang Y et al (2014) Co-immobilization of multi-enzyme on control-reduced graphene oxide by non-covalent bonds: an artificial biocatalytic system for the one-pot production of gluconic acid from starch. Green Chem 16:2558–2565

    Article  CAS  Google Scholar 

  28. Zore OV, Pattammattel A, Gnanaguru S et al (2015) Bienzyme-polymer-graphene oxide quaternary hybrid biocatalysts: efficient substrate channeling under chemically and thermally denaturing conditions. ACS Catal 5:4979–4988

    Article  CAS  Google Scholar 

  29. Mathesh M, Liu J, Barrow CJ et al (2017) Graphene-oxide-based enzyme nanoarchitectonics for substrate channeling. Chem A Eur J 23:304–311

    Article  CAS  Google Scholar 

  30. Li F, Ma W, Liu J et al (2018) Luminol, horseradish peroxidase, and glucose oxidase ternary functionalized graphene oxide for ultrasensitive glucose sensing. Anal Bioanal Chem 410:543–552

    Article  CAS  PubMed  Google Scholar 

  31. Zhang H, Hua SF, Zhang L (2020) Co-immobilization of cellulase and glucose oxidase on graphene oxide by covalent bonds: a biocatalytic system for one-pot conversion of gluconic acid from carboxymethyl cellulose. J Chem Technol Biotechnol 95:1116–1125

    CAS  Google Scholar 

  32. Gustafsson H, Küchler A, Holmberg K et al (2015) Co-immobilization of enzymes with the help of a dendronized polymer and mesoporous silica nanoparticles. J Mater Chem B 3:6174–6184

    Article  CAS  PubMed  Google Scholar 

  33. Zhuo Y, Yuan PX, Yuan R et al (2009) Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors. Biomaterials 30:2284–2290

    Article  CAS  PubMed  Google Scholar 

  34. Yang H, Gong C, Miao L et al (2017) A glucose biosensor based on horseradish peroxidase and glucose oxidase co-entrapped in carbon nanotubes modified electrode. Int J Electrochem Sci 12:4958–4969

    Article  CAS  Google Scholar 

  35. Hwang ET, Lee S (2019) Multienzymatic cascade reactions via enzyme complex by immobilization. ACS Catal 9:4402–4425

    Article  CAS  Google Scholar 

  36. Wu R, Song H, Wang Y et al (2020) Multienzyme co-immobilization-based bioelectrode: design of principles and bioelectrochemical applications. Chin J Chem Eng 28:2037–2050

    Article  CAS  Google Scholar 

  37. Logan TC, Clark DS, Stachowiak TB et al (2007) Photopatterning enzymes on polymer monoliths in microfluidic devices for steady-state kinetic analysis and spatially separated multi-enzyme reactions. Anal Chem 79:6592–6598

    Article  CAS  PubMed  Google Scholar 

  38. Luckarift HR, Ku BS, Dordick JS et al (2007) Silica-immobilized enzymes for multi-step synthesis in microfluidic devices. Biotechnol Bioeng 98:701–705

    Article  CAS  PubMed  Google Scholar 

  39. Ono Y, Kitajima M, Daikoku S et al (2008) Sequential enzymatic glycosyltransfer reactions on a microfluidic device: synthesis of a glycosaminoglycan linkage region tetrasaccharide. Lab Chip 8:2168–2173

    Article  CAS  PubMed  Google Scholar 

  40. Chan TR, Hilgraf R, Sharpless KB et al (2004) Polytriazoles as copper(I)-stabilizing ligands in catalysis. Org Lett 6:2853–2855

    Article  CAS  PubMed  Google Scholar 

  41. van Kasteren SI, Kramer HB, Gamblin DP et al (2007) Site-selective glycosylation of proteins: creating synthetic glycoproteins. Nat Protoc 2:3185–3194

    Article  PubMed  CAS  Google Scholar 

  42. Fornera S, Balmer TE, Zhang B et al (2011) Immobilization of peroxidase on SiO2 surfaces with the help of a dendronized polymer and the avidin-biotin system. Macromol Biosci 11:1052–1067

    Article  CAS  PubMed  Google Scholar 

  43. Fornera S, Bauer T, Schlüter AD et al (2012) Simple enzyme immobilization inside glass tubes for enzymatic cascade reactions. J Mater Chem 22:502–511

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maleki, H., Khoshnevisan, K., Baharifar, H. (2022). Random and Positional Immobilization of Multi-enzyme Systems. In: Stamatis, H. (eds) Multienzymatic Assemblies. Methods in Molecular Biology, vol 2487. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2269-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2269-8_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2268-1

  • Online ISBN: 978-1-0716-2269-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics