Skip to main content

Assessing Protein Interactions for Clustering of Mitochondrial Urea Cycle Enzymes

  • Protocol
  • First Online:
Multienzymatic Assemblies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2487))

Abstract

Enzyme clustering is a phenomenon that involves partitioning of proteins that function together in a common subcellular or sub-organellar compartment. Traditional genetic, biochemical, and biophysical approaches for studying protein–protein interactions in complexes with defined stoichiometry yield inconclusive results when applied to clustered proteins. This chapter describes a combination of approaches to study clustered proteins including co-immunoprecipitation, biochemical co-localization in purified mitochondria, and super resolution imaging of endogenous proteins in situ. These approaches can be used to study interactions among proteins that form clusters. We will illustrate this approach by using the urea cycle enzymes that localize in the mitochondrial matrix, and form clusters at the inner mitochondrial membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Battesti A, Bouveret E (2012) The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. Methods 58:325–334

    Article  CAS  PubMed  Google Scholar 

  2. Young KH (1998) Yeast two-hybrid: so many interactions, (in) so little time. Biol Reprod 58:302–331

    Article  CAS  PubMed  Google Scholar 

  3. Rich RL, Myszka DG (2007) Higher-throughput, label-free, real-time molecular interaction analysis. Anal Biochem 361:1–6

    Article  CAS  PubMed  Google Scholar 

  4. Attri AK, Minton AP (2005) Composition gradient static light scattering: a new technique for rapid detection and quantitative characterization of reversible macromolecular hetero-associations in solution. Anal Biochem 346:132–138

    Article  CAS  PubMed  Google Scholar 

  5. Martin SF, Tatham MH, Hay RT, Samuel ID (2008) Quantitative analysis of multi-protein interactions using FRET: application to the SUMO pathway. Protein Sci 17:777–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matsumoto S, Hammes GG (1975) Fluorescence energy transfer between ligand binding sites on aspartate transcarbamylase. Biochemistry 14(2):214–224

    Article  CAS  PubMed  Google Scholar 

  7. Pollok BA, Heim R (1999) Using GFP in FRET-based applications. Trends Cell Biol 9:57–60

    Article  CAS  PubMed  Google Scholar 

  8. Sekar RB, Periasamy A (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 160(5):629–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vinogradova O, Qin J (2012) NMR as a unique tool in assessment and complex determination of weak protein-protein interactions. Top Curr Chem 326:35–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Englander SW (2006) Hydrogen exchange and mass spectrometry: a historical perspective. J Am Soc Mass Spectrom 17:1481–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Keilhauer EC, Hein MY, Mann M (2015) Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS). Mol Cell Proteomics 14:120–135

    Article  CAS  PubMed  Google Scholar 

  12. Morris JH, Knudsen GM, Verschueren E, Johnson JR, Cimermancic P, Greninger AL, Pico AR (2014) Affinity purification-mass spectrometry and network analysis to understand protein-protein interactions. Nat Protoc 9:2539–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032

    Article  CAS  PubMed  Google Scholar 

  14. Herzog F, Kahraman A, Boehringer D, Mak R, Bracher A, Walzthoeni T, Leitner A, Beck M, Hartl FU, Ban N, Malmstrom L, Aebersold R (2012) Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry. Science 337:1348–1352

    Article  CAS  PubMed  Google Scholar 

  15. Wu F, Minteer S (2015) Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry. Angew Chem Int Ed Engl 54:1851–1854

    Article  CAS  PubMed  Google Scholar 

  16. Rhee HW, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA, Ting AY (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339:1328–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Floyd BJ, Wilkerson EM, Veling MT, Minogue CE, Xia C, Beebe ET, Wrobel RL, Cho H, Kremer LS, Alston CL, Gromek KA, Dolan BK, Ulbrich A, Stefely JA, Bohl SL, Werner KM, Jochem A, Westphall MS, Rensvold JW, Taylor RW, Prokisch H, Kim JP, Coon JJ, Pagliarini DJ (2016) Mitochondrial protein interaction mapping identifies regulators of respiratory chain function. Mol Cell 63:621–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, Colby G, Gebreab F, Gygi MP, Parzen H, Szpyt J, Tam S, Zarraga G, Pontano-Vaites L, Swarup S, White AE, Schweppe DK, Rad R, Erickson BK, Obar RA, Guruharsha KG, Li K, Artavanis-Tsakonas S, Gygi SP, Harper JW (2017) Architecture of the human interactome defines protein communities and disease networks. Nature 545:505–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schweppe DK, Huttlin EL, Harper JW, Gygi SP (2018) BioPlex display: an interactive suite for large-scale AP-MS protein-protein interaction data. J Proteome Res 17:722–726

    Article  CAS  PubMed  Google Scholar 

  20. Jie J, Lohr F, Barbar E (2015) Interactions of yeast dynein with dynein light chain and dynactin: general implications for intrinsically disordered duplex scaffolds in multiprotein assemblies. J Biol Chem 290:23863–23874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nyarko A, Song Y, Barbar E (2012) Intrinsic disorder in dynein intermediate chain modulates its interactions with NudE and dynactin. J Biol Chem 287:24884–24893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nyarko A, Song Y, Novacek J, Zidek L, Barbar E (2013) Multiple recognition motifs in nucleoporin Nup159 provide a stable and rigid Nup159-Dyn2 assembly. J Biol Chem 288:2614–2622

    Article  CAS  PubMed  Google Scholar 

  23. Velot C, Mixon MB, Teige M, Srere PA (1997) Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon. Biochemistry 36:14271–14276

    Article  CAS  PubMed  Google Scholar 

  24. Bulutoglu B, Garcia KE, Wu F, Minteer SD, Banta S (2016) Direct evidence for metabolon formation and substrate channeling in recombinant TCA cycle enzymes. ACS Chem Biol 11:2847–2853

    Article  CAS  PubMed  Google Scholar 

  25. Castellana M, Wilson MZ, Xu Y, Joshi P, Cristea IM, Rabinowitz JD, Gitai Z, Wingreen NS (2014) Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat Biotechnol 32:1011–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. De La Fuente IM, Martinez L, Perez-Samartin AL, Ormaetxea L, Amezaga C, Vera-Lopez A (2008) Global self-organization of the cellular metabolic structure. PLoS One 3:e3100

    Article  CAS  Google Scholar 

  27. Brusilow SW, Horwich AL (2001) Urea cycle enzymes. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited disease, vol 2. McGraw-Hill, New York, NY, pp 1909–1963

    Google Scholar 

  28. Grisolia S, Cohen PP (1952) The catalytic role of carbamyl glutamate in citrulline biosynthesis. J Biol Chem 198:561–571

    Article  CAS  PubMed  Google Scholar 

  29. Grisolia S, Cohen PP (1953) Catalytic role of glutamate derivatives in citrulline biosynthesis. J Biol Chem 204:753–757

    Article  CAS  PubMed  Google Scholar 

  30. Bradford NM, McGivan JD (1980) Evidence for the existence of an ornithine/citrulline antiporter in rat liver mitochondria. FEBS Lett 113:294–298

    Article  CAS  PubMed  Google Scholar 

  31. Kobayashi K, Sinasac DS, Iijima M, Boright AP, Begum L, Lee JR, Yasuda T, Ikeda S, Hirano R, Terazono H, Crackower MA, Kondo I, Tsui LC, Scherer SW, Saheki T (1999) The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat Genet 22:159–163

    Article  CAS  PubMed  Google Scholar 

  32. Cheung CW, Cohen NS, Raijman L (1989) Channeling of urea cycle intermediates in situ in permeabilized hepatocytes. J Biol Chem 264:4038–4044

    Article  CAS  PubMed  Google Scholar 

  33. Cohen NS, Cheung CW, Sijuwade E, Raijman L (1992) Kinetic properties of carbamoyl-phosphate synthase (ammonia) and ornithine carbamoyltransferase in permeabilized mitochondria. Biochem J 282:173–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tuchman M (1989) Persistent acitrullinemia after liver transplantation for carbamylphosphate synthetase deficiency. N Engl J Med 320:1498–1499

    Article  CAS  PubMed  Google Scholar 

  35. Cohen NS, Cheung CW, Kyan FS, Jones EE, Raijman L (1982) Mitochondrial carbamyl phosphate and citrulline synthesis at high matrix acetylglutamate. J Biol Chem 257:6898–6907

    Article  CAS  PubMed  Google Scholar 

  36. Raijman L (1976) Enzyme and reactant concentrations and the regulation of urea synthesis. In: Grisolia S, Baguena R, Mayor F (eds) The urea cycle. John Wiley & Sons, New York, pp 243–259

    Google Scholar 

  37. Sonoda T, Tatibana M (1983) Purification of N-acetyl-L-glutamate synthetase from rat liver mitochondria and substrate and activator specificity of the enzyme. J Biol Chem 258:9839–9844

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Palmfeldt J, Gregersen N, Makhov AM, Conway JF, Wang M, McCalley SP, Basu S, Alharbi H, St Croix C, Calderon MJ, Watkins S, Vockley J (2019) Mitochondrial fatty acid oxidation and the electron transport chain comprise a multifunctional mitochondrial protein complex. J Biol Chem 294:12380–12391

    Article  PubMed  PubMed Central  Google Scholar 

  39. An S, Kumar R, Sheets ED, Benkovic SJ (2008) Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science 320(5872):103–106

    Article  CAS  PubMed  Google Scholar 

  40. Chan CY, Zhao H, Pugh RJ, Pedley AM, French J, Jones SA, Zhuang X, Jinnah H, Huang TJ, Benkovic SJ (2015) Purinosome formation as a function of the cell cycle. Proc Natl Acad Sci U S A 112:1368–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lapuente-Brun E, Moreno-Loshuertos R, Acin-Perez R, Latorre-Pellicer A, Colas C, Balsa E, Perales-Clemente E, Quiros PM, Calvo E, Rodriguez-Hernandez MA, Navas P, Cruz R, Carracedo A, Lopez-Otin C, Perez-Martos A, Fernandez-Silva P, Fernandez-Vizarra E, Enriquez JA (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340:1567–1570

    Article  CAS  PubMed  Google Scholar 

  42. Subramanian K, Jochem A, Le Vasseur M, Lewis S, Paulson BR, Reddy TR, Russell JD, Coon JJ, Pagliarini DJ, Nunnari J (2019) Coenzyme Q biosynthetic proteins assemble in a substrate-dependent manner into domains at ER-mitochondria contacts. J Cell Biol 218:1353–1369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Haskins N, Bhuvanendran S, Anselmi C, Gams A, Kanholm T, Kocher KM, LoTempio J, Krohmaly KI, Sohai D, Stearrett N, Bonner E, Tuchman M, Morizono H, Jaiswal JK, Caldovic L (2020) Mitochondrial enzymes of the urea cycle cluster at the inner mitochondrial membrane. Front Physiol 11:542950

    Article  PubMed  Google Scholar 

  44. Makris G, Lauber M, Rufenacht V, Gemperle C, Diez-Fernandez C, Caldovic L, Froese DS, Haberle J (2021) Clinical and structural insights into potential dominant negative triggers of proximal urea cycle disorders. Biochimie 183:89–99

    Article  CAS  PubMed  Google Scholar 

  45. Powers-Lee SG, Mastico RA, Bendayan M (1987) The interaction of rat liver carbamoyl phosphate synthetase and ornithine transcarbamoylase with inner mitochondrial membranes. J Biol Chem 262:15683–15688

    Article  CAS  PubMed  Google Scholar 

  46. Thul PJ, Akesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, Alm T, Asplund A, Bjork L, Breckels LM, Backstrom A, Danielsson F, Fagerberg L, Fall J, Gatto L, Gnann C, Hober S, Hjelmare M, Johansson F, Lee S, Lindskog C, Mulder J, Mulvey CM, Nilsson P, Oksvold P, Rockberg J, Schutten R, Schwenk JM, Sivertsson A, Sjostedt E, Skogs M, Stadler C, Sullivan DP, Tegel H, Winsnes C, Zhang C, Zwahlen M, Mardinoglu A, Ponten F, von Feilitzen K, Lilley KS, Uhlen M, Lundberg E (2017) A subcellular map of the human proteome. Science 356:aal3321

    Article  CAS  Google Scholar 

  47. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljubica Caldovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Caldovic, L., Bhuvanendran, S., Jaiswal, J. (2022). Assessing Protein Interactions for Clustering of Mitochondrial Urea Cycle Enzymes. In: Stamatis, H. (eds) Multienzymatic Assemblies. Methods in Molecular Biology, vol 2487. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2269-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2269-8_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2268-1

  • Online ISBN: 978-1-0716-2269-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics