Skip to main content

Rational Design of Self-Assembling Supramolecular Protein Nanostructures Utilizing the Cucurbit[8]Uril Macrocyclic Host

  • Protocol
  • First Online:
Multienzymatic Assemblies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2487))

  • 608 Accesses

Abstract

Self-assembly is a phenomenon that governs molecular structural organization in nature, therefore raising research interest for the fabrication of novel nanomaterials with diverse applications in biocatalysis, biomedicine, material templating, and biosensor development. In this chapter we provide protocols for the development of supramolecular protein complexes based on host–guest interactions in the presence of the macrocyclic host, cucurbit[8]uril (CB[8]). CB[8] is reported to exhibit high binding affinity towards the tripeptide Phe-Gly-Gly (FGG), therefore it can be utilized as a selective adhesive of protein molecules, after fusion of FGG to an accessible protein surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Whitesides GM, Boncheva M (2002) Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci U S A 99:4769–4774

    Article  CAS  Google Scholar 

  2. Li F, Wang D, Zhou J et al (2020) Design and biosynthesis of functional protein nanostructures. Sci China Life Sci 63:1142–1158

    Article  CAS  Google Scholar 

  3. Chronopoulou EG, Ioannou E, Perperopoulou F et al (2020) Protein nanostructures with purpose-designed properties in biotechnology and medicine. In: Shukla P (ed) Microbial enzymes and biotechniques. Springer, Singapore. https://doi.org/10.1007/978-981-15-6895-4_5

    Chapter  Google Scholar 

  4. Kuan SL, Bergamini FRG, Weil T (2018) Functional protein nanostructures: a chemical toolbox. Chem Soc Rev 47(24):9069–9105. https://doi.org/10.1039/c8cs00590g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. King NP, Sheffler W, Sawaya MR et al (2012) Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336(6085):1171–1174. https://doi.org/10.1126/science.1219364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Padilla JE, Colovos C, Yeates TO (2001) Nanohedra: Using symmetry to design self-assembling protein cages, layers, crystals, and filaments. Proc Natl Acad Sci U S A 98(5):2217–2221. https://doi.org/10.1073/pnas.041614998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hamley IW (2019) Protein assemblies: nature-inspired and designed nanostructures. Biomacromolecules 20(5):1829–1848. https://doi.org/10.1021/acs.biomac.9b00228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun H, Luo Q, Hou C et al (2017) Nanostructures based on protein self-assembly: from hierarchical construction to bioinspired materials. Nano Today 14:16–41., ISSN 1748-0132. https://doi.org/10.1016/j.nantod.2017.04.006

    Article  CAS  Google Scholar 

  9. Huang Z, Qin K, Deng G et al (2016) Supramolecular chemistry of cucurbiturils: tuning cooperativity with multiple non-covalent interactions from positive to negative. Langmuir 32(47):12352–12360

    Article  CAS  Google Scholar 

  10. Heitmann LM, Taylor AB, Hart PJ et al (2006) Sequence-specific recognition and cooperative dimerization of N-terminal aromatic peptides in aqueous solution by a synthetic host. J Am Chem Soc 128(38):12574–12581. https://doi.org/10.1021/ja064323s

    Article  CAS  PubMed  Google Scholar 

  11. Sonzini S, Ryan STJ, Scherman OA (2013) Supramolecular dimerisation of middle-chain Phe pentapeptides via CB[8] host–guest homoternary complex formation. Chem Commun 2013(49):8779–8781. https://doi.org/10.1039/c3cc45420g

    Article  CAS  Google Scholar 

  12. Hou C, Li J, Zhao L et al (2013) Construction of protein nanowires through Cucurbit[8]uril-based highly specific host-guest interactions: an approach to the assembly of functional proteins. Angew Chem Int Ed 52(21):5590–5593. https://doi.org/10.1002/anie.201300692

    Article  CAS  Google Scholar 

  13. Bosmans RPG, Briels JM, Milroy LG et al (2016) Supramolecular control over split-luciferase complementation. Angew Chem Int Ed 55(31):8899–8903. https://doi.org/10.1002/anie.201602807

    Article  CAS  Google Scholar 

  14. Biedermann F, Rauwald U, Zayed JM et al (2011) A supramolecular route for reversible protein-polymer conjugation. Chem Sci. 2(2):279–286. https://doi.org/10.1039/c0sc00435a

    Article  CAS  Google Scholar 

  15. Li X, Bai Y, Huang Z et al (2017) A highly controllable protein self-assembly system with morphological versatility induced by reengineered host–guest interactions. Nanoscale 9(23):7991–7997. https://doi.org/10.1039/c7nr01612c

    Article  CAS  PubMed  Google Scholar 

  16. Hermanson GT (2013) Chapter 10 - Fluorescent probes. In: Hermanson GT (ed) Bioconjugate techniques, 3rd edn. Academic Press, Cambridge, pp 395–463. https://doi.org/10.1016/B978-0-12-382239-0.00010-8

    Chapter  Google Scholar 

  17. Podhradsky D, Drobnica L, Kristian P (1979) Reactions of cysteine, its derivatives, glutathione, coenzyme A, and dihydrolipoic acid with isothiocyanates. Experientia 35:154

    Article  CAS  Google Scholar 

  18. Karlsson I, Samuelsson K, Ponting DJ et al (2016) Peptide reactivity of isothiocyanates – implications for skin allergy. Sci Rep 6(1):21203. https://doi.org/10.1038/srep21203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Petri L, Szijj PA, Kelemen A et al (2020) Cysteine specific bioconjugation with benzyl isothiocyanates. RSC Adv 10(25):14928–14936. https://doi.org/10.1039/D0RA02934C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nolting D, Aziz EF, Ottosson N et al (2007) pH-induced protonation of lysine in aqueous solution causes chemical shifts in X-ray photoelectron spectroscopy. J Am Chem Soc 129(45):14068–14073. https://doi.org/10.1021/ja072971l

    Article  CAS  PubMed  Google Scholar 

  21. Bulaj G, Kortemme T, Goldenberg DP (1998) Ionization−reactivity relationships for cysteine thiols in polypeptides. Biochemistry 37(25):8965–8972. https://doi.org/10.1021/bi973101r

    Article  CAS  PubMed  Google Scholar 

  22. Wheate NJ, Limantoro C (2016) Cucurbit[n]urils as excipients in pharmaceutical dosage forms. Supramol Chem 28(9–10):849–856. https://doi.org/10.1080/10610278.2016.1178746

    Article  CAS  Google Scholar 

  23. Buschmann HJ, Cleve E, Schollmeyer E (1992) Cucurbituril as a ligand for the complexation of cations in aqueous solutions. Inorg Chim Acta 193(1):93–97., ISSN 0020-1693. https://doi.org/10.1016/S0020-1693(00)83800-1

    Article  CAS  Google Scholar 

  24. Yin JF, Hu Y, Wang DG et al (2017) Cucurbit[8]uril-based water-soluble supramolecular dendronized polymer: evidence from single polymer chain morphology and force spectroscopy. ACS Macro Lett. 6(2):139–143

    Article  CAS  Google Scholar 

  25. Vinciguerra B, Zavalij PY, Isaacs L (2015) Synthesis and recognition properties of cucurbit[8]uril derivatives. Org Lett 17(20):5068–5071. https://doi.org/10.1021/acs.orglett.5b02558

    Article  CAS  PubMed  Google Scholar 

  26. Cong H, Ni XL, Xiao X et al (2016) Synthesis and separation of cucurbit[n]urils and derivatives. Org Biomol Chem 14(19):4335–4364. https://doi.org/10.1039/c6ob00268d. PMID: 26991738

    Article  CAS  PubMed  Google Scholar 

  27. Wang XX, Tian FY, Liu M et al (2019) A water soluble tetramethyl-substituted cucurbit[8]uril obtained from larger intermediates? Tetrahedron 75(37):130488., ISSN 0040-4020. https://doi.org/10.1016/j.tet.2019.130488

    Article  CAS  Google Scholar 

  28. Ma X, Sun R, Cheng J et al (2015) Fluorescence aggregation caused quenching versus aggregation-induced emission: a visual teaching technology for undergraduate chemistry students. J Chem Educ 93(2015):345–350

    Google Scholar 

  29. Birks JB (1970) Photophysics of aromatic molecules. Wiley- InterScience, London

    Google Scholar 

  30. Hong P, Koza S, Bouvier ESP (2012) A review size exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J Liq Chromatogr Relat Technol 35(20):2923–2950

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos E. Labrou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ioannou, E., Labrou, N.E. (2022). Rational Design of Self-Assembling Supramolecular Protein Nanostructures Utilizing the Cucurbit[8]Uril Macrocyclic Host. In: Stamatis, H. (eds) Multienzymatic Assemblies. Methods in Molecular Biology, vol 2487. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2269-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2269-8_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2268-1

  • Online ISBN: 978-1-0716-2269-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics