Skip to main content

Human-Engineered Atrial Tissue for Studying Atrial Fibrillation

  • Protocol
  • First Online:
Cardiac Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2485))

Abstract

This chapter details the generation of atrial fibrin-based engineered heart tissue (EHT) in standard 24-well format as a 3D model for the human atrium. Compared to 2D cultivation, human-induced pluripotent stem cells (hiPSCs)-derived atrial cardiomyocytes demonstrated a higher degree of maturation in 3D format. Furthermore, we have demonstrated in previous work that the model displayed atrial characteristics in terms of contraction and gene expression patterns, electrophysiology, and pharmacological response. Here, we describe how to embed atrial cardiomyocytes differentiated from hiPSCs in a fibrin hydrogel to form atrial EHT attached to elastic silicone posts, allowing auxotonic contraction. In addition, we describe how force and other contractility parameters can be derived from these beating atrial EHTs by video-optical monitoring. The presented atrial EHT model is suitable to study chamber-specific mechanisms, drug effects and to serve for disease modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kirchhof P, Benussi S, Kotecha D et al (2016) 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J 37:2893–2962

    Article  Google Scholar 

  2. Iwasaki YK, Nishida K, Kato T et al (2011) Atrial fibrillation pathophysiology: implications for management. Circulation 124:2264–2274

    Article  CAS  Google Scholar 

  3. Devalla HD, Schwach V, Ford JW et al (2015) Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol Med 7:394–410

    Article  CAS  Google Scholar 

  4. Milani-Nejad N, Janssen PML (2014) Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol Ther 141:235–249

    Article  CAS  Google Scholar 

  5. Blazeski A, Zhu R, Hunter DW et al (2012) Cardiomyocytes derived from human induced pluripotent stem cells as models for normal and diseased cardiac electrophysiology and contractility. Prog Biophys Mol Biol 110:166–177

    Article  CAS  Google Scholar 

  6. Ma J, Guo L, Fiene SJ et al (2011) High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am J Physiol Circ Physiol 301:H2006–H2017

    Article  CAS  Google Scholar 

  7. van den Berg CW, Elliott DA, Braam SR et al (2016) Differentiation of human pluripotent stem cells to cardiomyocytes under defined conditions. Methods Mol Biol 1353:163–180

    Article  Google Scholar 

  8. Marczenke M, Piccini I, Mengarelli I et al (2017) Cardiac subtype-specific modeling of Kv1.5 ion channel deficiency using human pluripotent stem cells. Front Physiol 8:469

    Article  Google Scholar 

  9. Lee JH, Protze SI, Laksman Z et al (2017) Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell 21:179–194.e4

    Article  CAS  Google Scholar 

  10. Zhang Q, Jiang J, Han P et al (2011) Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals. Cell Res 21:579–587

    Article  CAS  Google Scholar 

  11. Zaffran S, Robrini N, Bertrand N (2014) Retinoids and cardiac development. J Dev Biol 2:50–71

    Article  Google Scholar 

  12. Lemme M, Ulmer M, Lemoine MD et al (2018) Atrial-like engineered heart tissue: an in vitro model of the human atrium. Stem Cell Reports 11:1378–1390

    Article  CAS  Google Scholar 

  13. Cyganek L, Tiburcy M, Sekeres K et al (2018) Deep phenotyping of human induced pluripotent stem cell–derived atrial and ventricular cardiomyocytes. J Clin Invest 3(12):e99941

    Google Scholar 

  14. Besser RR, Ishahak M, Mayo V et al (2018) Engineered microenvironments for maturation of stem cell derived cardiac myocytes. Theranostics 8:124–140

    Article  CAS  Google Scholar 

  15. Weinberger F, Mannhardt I, Eschenhagen T (2017) Engineering cardiac muscle tissue. Circ Res 120:1487–1500

    Article  CAS  Google Scholar 

  16. Kolanowski TJ, Antos CL, Guan K (2017) Making human cardiomyocytes up to date: derivation, maturation state and perspectives. Int J Cardiol 241:379–386

    Article  Google Scholar 

  17. Schaaf S, Eder A, Vollert I et al (2014) Generation of strip-format fibrin-based engineered heart tissue (EHT). Methods Mol Biol 1181:121–129

    Article  Google Scholar 

  18. Eder A, Vollert I, Hansen A et al (2016) Human engineered heart tissue as a model system for drug testing. Adv Drug Deliv Rev 96:214–224

    Article  CAS  Google Scholar 

  19. Mannhardt I, Breckwoldt K, Letuffe-Brenière D et al (2015) Human engineered heart tissue: analysis of contractile force. Stem Cell Reports 7:29–42

    Article  Google Scholar 

  20. Ulmer BM, Stoehr A, Schulze ML et al (2018) Contractile work contributes to maturation of energy metabolism in hiPSC-derived cardiomyocytes. Stem Cell Reports 10:834–847

    Article  CAS  Google Scholar 

  21. Lemoine MD, Krause T, Koivumäki JT et al (2018) Human iPSC-derived engineered heart tissue as a sensitive test system for QT prolongation and arrhythmic triggers. Circ Arrhythmia Electrophysiol 11:e006035

    Article  Google Scholar 

  22. Lemoine MD, Mannhardt I, Breckwoldt K et al (2017) Human iPSC-derived cardiomyocytes cultured in 3D engineered heart tissue show physiological upstroke velocity and sodium current density. Sci Rep 7:5464

    Article  Google Scholar 

  23. Goldfracht I, Protze S, Shiti A et al (2020) Generating ring-shaped engineered heart tissues from ventricular and atrial human pluripotent stem cell-derived cardiomyocytes. Nat Commun 11:1–15

    Article  Google Scholar 

  24. Lemme M, Braren I, Prondzynski M et al (2019) Chronic intermittent tachypacing by an optogenetic approach induces arrhythmia vulnerability in human engineered heart tissue. Cardiovasc Res 116(8):1487–1499

    Article  Google Scholar 

  25. Lee MO, Jung KB, Jo SJ et al (2019) Modelling cardiac fibrosis using three-dimensional cardiac microtissues derived from human embryonic stem cells. J Biol Eng 13:1–17

    Article  Google Scholar 

  26. Breckwoldt K, Letuffe-Brenière D, Mannhardt I et al (2017) Differentiation of cardiomyocytes and generation of human engineered heart tissue. Nat Protoc 12:1177

    Article  CAS  Google Scholar 

  27. van Meer BJ, de Vries H, Firth KSA et al (2017) Small molecule absorption by PDMS in the context of drug response bioassays. Biochem Biophys Res Commun 482:323–328

    Article  Google Scholar 

  28. Sala L, Van MBJ, Tertoolen LGJ et al (2018) Musclemotion: a versatile open software tool to quantify cardiomyocyte and cardiac muscle contraction in vitro and in vivo. Circ Res 122:e5–e16

    Article  CAS  Google Scholar 

  29. Mannhardt I, Saleem U, Benzin A et al (2017) Automated contraction analysis of human engineered heart tissue for cardiac drug safety screening. J Vis Exp 2017:1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Eschenhagen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Krause, J. et al. (2022). Human-Engineered Atrial Tissue for Studying Atrial Fibrillation. In: Coulombe, K.L., Black III, L.D. (eds) Cardiac Tissue Engineering. Methods in Molecular Biology, vol 2485. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2261-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2261-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2260-5

  • Online ISBN: 978-1-0716-2261-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics