Skip to main content

Preparation of Molecularly Imprinted Poly(N-Isopropylacrylamide) Thermosensitive Based Cryogels

  • Protocol
  • First Online:
Affinity Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2466))

  • 1041 Accesses

Abstract

Cryogels are defined as polymeric gel matrices with interconnected macropores providing an advantage to be efficient carriers enabling unhindered diffusion of interested molecule. Cryogels could be easily prepared with the combination of molecular imprinting. Molecular imprinting technology provides selective and sensitive recognition for biomolecules. Immunoglobulin G (IgG) is a main effector component in human response. It is recently well recognized that the purification strategies for IgG have intensively gained attention to treat immune defects. Several methods including affinity chromatography have been applied for the purification of IgG from complex media. The purification of IgG plays a crucial role in medical applications using several materials. Among these, cryogels have been widely applied for the purification of several biomolecules. They offer to create low-cost affinity systems with high chemical and physical stability. Above all, temperature sensitive polymers enable a reversible phase transition against small temperature changes, by the way, reversible swelling and shrinking manner is observed.

In this chapter, immunoglobulin G imprinted thermosensitive poly(N-isopropylacrylamide-N methacryloyl-(l)-histidine) [p(NIPA-MAH)/IgG-MIP] monolithic cryogel is explained. The preparation and characterization of cryogels are summarized. In addition, IgG binding studies with different parameters are briefly described. Herein, an effective design principle is presented to create imprinted temperature-sensitive cryogels for IgG purification. A p(NIPA-MAH)/IgG-MIP monolithic cryogel was synthesized for IgG purification. Afterward, IgG binding capacity of p(NIPA-MAH)/IgG-MIP cryogels was examined in different experimental conditions. Apart from these, selectivity of the p(NIPA-MAH)/IgG-MIP cryogel was shown by comparing IgG binding capacity of nonimprinted [p(NIPA-MAH)/NIP] one. Finally, the IgG purification ability of the p(NIPA-MAH)/IgG-MIP cryogel from human plasma was demonstrated proving its application in affinity chromatography using real sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Butler JE (1983) Bovine immunoglobulins: an augmented review. Vet Immunol Immunopathol 4:43–152

    Article  CAS  Google Scholar 

  2. Gilardin L, Bayry J, Kaveri SV (2015) Intravenous immunoglobulin as clinical immune-modulating therapy. CMAJ 187:257–264

    Article  Google Scholar 

  3. Daoud-Attieh M, Chaib H, Armutcu C, Uzun L, Elkak A, Denizli A (2013) Immunoglobulin G purification from bovine serum with pseudo-specific supermacroporous cryogels. Sep Purif Technol 118:816–822

    Article  CAS  Google Scholar 

  4. Shaio MF, Hou SC, Chen JG, Yang KD, Chang FY, Wu CC (1990) Immunoglobulin G-dependent classical complement pathway activation in neutrophil-mediated cytotoxicity to infective larvae of Angiostrongylus cantonensis. Ann Trop Med Parasitol 84:185–191

    Article  CAS  Google Scholar 

  5. Yogo R, Yamaguchi Y, Watanabe H, Yagi H, Satoh T, Nakanishi M, Onitsuka M, Omasa T, Shimada M, Maruno T, Torisu T, Watanabe S, Higo D, Uchihashi T, Yanaka S, Uchiyama S, Kato K (2019) The Fab portion of immunoglobulin G contributes to its binding to Fcγ receptor III. Sci Rep 9:11957

    Article  Google Scholar 

  6. Xu M, Bennett DLH, Querol LA, Wu LJ, Irani SR, Watson JC, Pittock SJ, Klein CJ (2020) Pain and the immune system: emerging concepts of IgG-mediated autoimmune pain and immunotherapies. J Neurol Neurosurg Psychiatry 91:177–188

    Article  Google Scholar 

  7. Saylan Y, Üzek R, Uzun L, Denizli A (2014) Surface imprinting approach for preparing specific adsorbent for IgG separation. J Biomater Sci Polym Ed 25:881–894

    Article  CAS  Google Scholar 

  8. Chen X, Wang Y, Wang Y, Li Y (2020) Protein L chromatography: a useful tool for monitoring/separating homodimers during the purification of IgG-like asymmetric bispecific antibodies. Protein Expr Purif 175:105711

    Article  CAS  Google Scholar 

  9. Mourão CA, Marcuz C, Haupt K, Bueno SMA (2019) Polyacrylamide-alginate (PAAm-Alg) and phospho-L-tyrosine-linked PAAm-Alg monolithic cryogels: purification of IgG from human serum. J Chromatogr B Anal Technol Biomed Life Sci 1129:121783

    Article  Google Scholar 

  10. Roque ACA, Silva CSO, Taipa MÂ (2007) Affinity-based methodologies and ligands for antibody purification: advances and perspectives. J Chromatogr A 1160(1–2):44–55

    Article  CAS  Google Scholar 

  11. Arora S, Saxena V, Ayyar BV (2017) Affinity chromatography: a versatile technique for antibody purification. Methods 116:84–94

    Article  CAS  Google Scholar 

  12. Chen L, Wang X, Lu W, Wu X, Li J (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45:2137–2211

    Article  CAS  Google Scholar 

  13. Bereli N, Saylan Y, Uzun L, Say R, Denizli A (2011) L-Histidine imprinted supermacroporous cryogels for protein recognition. Sep Purif Technol 82:28–35

    Article  CAS  Google Scholar 

  14. Idil N, Hedström M, Denizli A, Mattiasson B (2017) Whole cell based microcontact imprinted capacitive biosensor for the detection of Escherichia coli. Biosens Bioelectron 87:807–815

    Article  CAS  Google Scholar 

  15. Aslıyüce S, Mattiasson B, Denizli A (2019) Combined protein A imprinting and cryogelation for production of spherical affinity material. Biomed Chromatogr 33:e4605

    Article  Google Scholar 

  16. Matyjaszewski K (2017) Polymer chemistry: current status and perspective. Chem Int 39:7–11

    Article  CAS  Google Scholar 

  17. Chakraborty DD, Nath LK, Chakraborty P (2018) Recent progress in smart polymers: behavior, mechanistic understanding and application. Polym Plast Technol Eng 57:945–957

    Article  Google Scholar 

  18. Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers 3:1215–1242

    Article  CAS  Google Scholar 

  19. Sheng Y, Duan Z, Jia Z, Pan Y, Sun Y, Li J, Deng L, Bradley M, Zhang R (2018) Thermo-responsive nanospheres with entrapped fluorescent conjugated polymers for cellular labeling. ACS Appl Bio Mater 1:888–893

    Article  CAS  Google Scholar 

  20. Pasparakis G, Cockayne A, Alexander C (2007) Control of bacterial aggregation by thermoresponsive glycopolymers. J Am Chem Soc 129:11014–11015

    Article  CAS  Google Scholar 

  21. Sayers EJ, Magnusson JP, Moody PR, Mastrotto F, Conte C, Brazzale C, Borri P, Caliceti P, Watson P, Mantovani G, Aylott J, Salmaso S, Jones AT, Alexander C (2018) Switching of macromolecular ligand display by thermoresponsive polymers mediates endocytosis of multiconjugate nanoparticles. Bioconjug Chem 29:1030–1046

    Article  CAS  Google Scholar 

  22. Pichon V, Delaunay N, Combès A (2020) Sample preparation using molecularly ımprinted polymers. Anal Chem 92:16–33

    Article  CAS  Google Scholar 

  23. Perçin I, Idil N, Denizli A (2019) Molecularly imprinted poly(N-isopropylacrylamide) thermosensitive based cryogel for immunoglobulin G purification. Process Biochem 80:181–189

    Article  Google Scholar 

  24. Si Z, Yu P, Dong Y, Lu Y, Tan Z, Yu X, Zhao R, Yan Y (2019) Thermo-responsive molecularly imprinted hydrogels for selective adsorption and controlled release of phenol from aqueous solution. Front Chem 6:674

    Article  Google Scholar 

  25. Kozlovskaya V, Kharlampieva E (2020) Self-assemblies of thermoresponsive poly(N-vinylcaprolactam) polymers for applications in biomedical field. ACS Appl Polym Mater 153:27–48

    Google Scholar 

  26. Zhang Y, Cai J, Li C, Wei J, Liu Z, Xue W (2016) Effects of thermosensitive poly(N-isopropylacrylamide) on blood coagulation. J Mater Chem B 4:3733–3749

    Article  CAS  Google Scholar 

  27. Wei H, Cheng SX, Zhang XZ, Zhuo RX (2009) Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog Polym Sci 34:893–910

    Article  CAS  Google Scholar 

  28. Hua Z, Chen Z, Li Y, Zhao M (2008) Thermosensitive and salt-sensitive molecularly imprinted hydrogel for bovine serum albumin. Langmuir 24:5773–5780

    Article  CAS  Google Scholar 

  29. Karakoç V, Hilal ŞE, İde S, Türkmen D, Soomro R, Denizli A (2014) Thermosensitive poly(N-isopropylacrylamide) based cryogel: a SAXS study. Hacettepe J Biol Chem 42:237–249

    Article  Google Scholar 

  30. Hien Nguyen T, Ansell RJ (2012) N-isopropylacrylamide as a functional monomer for noncovalent molecular imprinting. J Mol Recognit 25:1–10

    Article  CAS  Google Scholar 

  31. Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21:445–451

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Denizli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Perçin, I., Idil, N., Denizli, A. (2022). Preparation of Molecularly Imprinted Poly(N-Isopropylacrylamide) Thermosensitive Based Cryogels. In: Ayyar, B.V., Arora, S. (eds) Affinity Chromatography. Methods in Molecular Biology, vol 2466. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2176-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2176-9_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2175-2

  • Online ISBN: 978-1-0716-2176-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics