Skip to main content

Entrapment of Proteins Within Columns for High-Performance Affinity Chromatography

  • Protocol
  • First Online:
Affinity Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2466))

  • 1104 Accesses

Abstract

Entrapment is a noncovalent immobilization method that enables a large biological binding agent, such as a protein, to be put within a support without modifying the structure of the binding agent. This chapter describes an on-column entrapment method that can be used with proteins and HPLC-grade silica to prepare columns for high-performance liquid chromatography. In this method, a protein is trapped within a dihydrazide-activated silica support by using oxidized glycogen as a capping agent. This method allows the protein to be placed within the support in a soluble form and with little or no loss of activity. The approach and reagents needed for this method are described in this chapter, along with some applications reported for columns that have been made using on-column protein entrapment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Larsson PO (1984) High-performance liquid affinity chromatography. Methods Enzymol 104:212–223

    Article  CAS  Google Scholar 

  2. Duong-Thi MD, Meiby E, Bergstrom M, Fex T, Isaksson R, Ohlson S (2011) Weak affinity chromatography as a new approach for fragment screening in drug discovery. Anal Biochem 414:138–146

    Article  CAS  Google Scholar 

  3. Zhang C, Rodriguez E, Bi C, Zheng X, Suresh D, Suh K, Li Z, Elsebaei F, Hage DS (2018) High performance affinity chromatography and related separation methods for the analysis of biological and pharmaceutical agents. Analyst 143:374–391

    Article  CAS  Google Scholar 

  4. Mallik R, Jiang T, Hage DS (2004) High-performance affinity monolith chromatography: development and evaluation of human serum albumin columns. Anal Chem 76:7013–7022

    Article  CAS  Google Scholar 

  5. Xuan H, Hage DS (2005) Immobilization of α1-acid glycoprotein for chromatographic studies of drug-protein binding. Anal Biochem 346:300–310

    Article  CAS  Google Scholar 

  6. Kim HS, Hage DS (2006) Immobilization methods for affinity chromatography. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  7. Matsuda R, Anguizola J, Joseph KS, Hage DS (2012) Analysis of drug interactions with modified proteins by high-performance affinity chromatography: binding of glibenclamide to normal and glycated human serum albumin. J Chromatogr A 1265:114–122

    Article  CAS  Google Scholar 

  8. Walters RR (1985) Affinity chromatography. Anal Chem 57:1099A–1114A

    CAS  PubMed  Google Scholar 

  9. Hage DS, Walters RR (1987) Dual-column determination of albumin and immunoglobulin G in serum by high-performance affinity chromatography. J Chromatogr A 386:37–49

    Article  CAS  Google Scholar 

  10. Jackson AJ, Xuan H, Hage DS (2010) Entrapment of proteins in glycogen-capped and hydrazide-activated supports. Anal Biochem 404:106–108

    Article  CAS  Google Scholar 

  11. Jackson AJ, Anguizola J, Pfaunmiller EL, Hage DS (2013) Use of entrapment and high-performance affinity chromatography to compare the binding of drugs and site-specific probes with normal and glycated human serum albumin. Anal Bioanal Chem 405:5833–5841

    Article  CAS  Google Scholar 

  12. Bi C, Jackson A, Vargas-Badilla J, Li R, Rada G, Anguizola J, Pfaunmiller E, Hage DS (2016) Entrapment of alpha1-acid glycoprotein in high-performance affinity columns for drug-protein binding studies. J Chromatogr B 1021:188–196

    Article  CAS  Google Scholar 

  13. Livage J, Coradin T, Roux C (2001) Encapsulation of biomolecules in silica gels. J Phys Condens Matter 13:R673–R691

    Article  CAS  Google Scholar 

  14. Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol–gel materials. J Mater Chem 16:1013–1030

    Article  CAS  Google Scholar 

  15. Anguizola J, Bi C, Koke M, Jackson A, Hage DS (2016) On-column entrapment of alpha1-acid glycoprotein for studies of drug-protein binding by high-performance affinity chromatography. Anal Bioanal Chem 408:5745–5756

    Article  CAS  Google Scholar 

  16. Vargas-Badilla J, Poddar S, Azaria S, Zhang C, Hage DS (2019) Optimization of protein entrapment in affinity microcolumns using hydrazide-activated silica and glycogen as a capping agent. J Chromatogr B 1121:1–8

    Article  CAS  Google Scholar 

  17. Betancor L, Luckarift HR (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol 26:566–572

    Article  CAS  Google Scholar 

  18. Monton MRN, Forsberg EM, Brennan JD (2012) Tailoring sol-gel-derived silica materials for optical biosensing. Chem Mater 24:796–811

    Article  CAS  Google Scholar 

  19. Regnier FE, Gooding KM (1980) High-performance liquid chromatography of proteins. Anal Biochem 103:1–25

    Article  CAS  Google Scholar 

  20. Walters RR (1982) High-performance affinity chromatography: pore-size effects. J Chromatogr A 249:19–28

    Article  CAS  Google Scholar 

  21. Ruhn PF, Garver S, Hage DS (1994) Development of dihydrazide-activated silica supports for high-performance affinity chromatography. J Chromatogr A 669:9–19

    Article  CAS  Google Scholar 

  22. Loun B, Hage DS (1994) Chiral separation mechanisms in protein-based HPLC columns. 1. Thermodynamic studies of (R)-warfarin and (S)-warfarin binding to immobilized human serum-albumin. Anal Chem 66:3814–3822

    Article  CAS  Google Scholar 

  23. Zheng X, Li Z, Beeram S, Podariu M, Matsuda R, Pfaunmiller EL, White CJ II, Carter N, Hage DS (2014) Analysis of biomolecular interactions using affinity microcolumns: a review. J Chromatogr B 968:49–63

    Article  CAS  Google Scholar 

  24. Rodriguez EL, Poddar S, Choksi M, Hage DS (2020) Development of an on-line immunoextraction/entrapment system for protein capture and use in drug binding studies by high-performance affinity chromatography. J Chromatogr B 1136:121812

    Article  CAS  Google Scholar 

  25. Tao P, Poddar S, Sun Z, Hage DS, Chen J (2018) Analysis of solute-protein interactions and solute-solute competition by zonal elution affinity chromatography. Methods 146:3–11

    Article  CAS  Google Scholar 

  26. Hage DS (2002) High-performance affinity chromatography: a powerful tool for studying serum protein binding. J Chromatogr B 768:3–30

    Article  CAS  Google Scholar 

  27. Hage DS, Chen J (2006) Quantitative affinity chromatography: practical aspects. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  28. Pfaunmiller EL, Paulemond ML, Dupper CM, Hage DS (2013) Affinity monolith chromatography: a review of principles and recent analytical applications. Anal Bioanal Chem 405:2133–2145

    Article  CAS  Google Scholar 

  29. Joseph KS, Hage DS (2010) The effects of glycation on the binding of human serum albumin to warfarin and L-tryptophan. J Pharm Biomed Anal 53:811–818

    Article  CAS  Google Scholar 

  30. Anguizola J (2013) Affinity chromatographic studies of drug-protein binding in personalized medicine. Dissertation, University of Nebraska-Lincoln

    Google Scholar 

  31. Livingston AG, Chase HA (1989) Preparation and characterization of adsorbents for use in high-performance liquid affinity chromatography. J Chromatogr A 481:159–174

    Article  CAS  Google Scholar 

  32. Inman JK, Dintzis HM (1969) The derivatization of cross-linked polyacrylamide beads. Controlled introduction of functional groups for the preparation of special-purpose, biochemical adsorbents. Biochemistry 8:4074–4082

    Article  CAS  Google Scholar 

  33. Keener CR, Wolfe CAC, Hage DS (1994) Optimization of oxidized antibody labeling with Lucifer yellow CH. BioTechniques 16:894–897

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the University of Nebraska Research Council, the University of Nebraska-Lincoln College of Arts and Sciences, the National Science Foundation under grant CHE 2108881, and the National Institutes of Health under grant R01 DK069629.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Hage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Poddar, S., Sharmeen, S., Hage, D.S. (2022). Entrapment of Proteins Within Columns for High-Performance Affinity Chromatography. In: Ayyar, B.V., Arora, S. (eds) Affinity Chromatography. Methods in Molecular Biology, vol 2466. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2176-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2176-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2175-2

  • Online ISBN: 978-1-0716-2176-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics