Skip to main content

Construction of Strong Promoters by Assembling Sigma Factor Binding Motifs

  • Protocol
  • First Online:
Directed Evolution

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2461))

Abstract

Development of strong promoters is of growing interest in the field of biotechnology and synthetic biology. Here we present a protocol for the construction of strong prokaryotic promoters that can be recognized by designated multiple sigma factors by interlocking their cognate binding motifs on DNA strands. Strong and stress responsive promoters for Escherichia coli and Bacillus subtilis have been created following the presented protocol. Customized promoters could be easily developed for fine-tuning gene expression or overproducing enzymes with prokaryotic cell factories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang N, Darbari VC, Glyde R, Zhang XD, Buck M (2016) The bacterial enhancer-dependent RNA polymerase. Biochem J 473:3741–3753

    Article  CAS  PubMed  Google Scholar 

  2. Barnard A, Wolfe A, Busby S (2004) Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. Curr Opin Microbiol 7:102–108

    Article  CAS  PubMed  Google Scholar 

  3. Block DHS, Hussein R, Liang LW, Lim HN (2012) Regulatory consequences of gene translocation in bacteria. Nucleic Acids Res 40:8979–8992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Browning DF, Busby SJW (2016) Local and global regulation of transcription initiation in bacteria. Nat Rev Microbiol 14:638–650

    Article  CAS  PubMed  Google Scholar 

  5. Browning DF, Butala M, Busby SJW (2019) Bacterial transcription factors: regulation by pick “N” mix. J Mol Biol 431:4067–4077

    Article  CAS  PubMed  Google Scholar 

  6. Feklistov A (2013) RNA polymerase: in search of promoters. Ann N Y Acad Sci 1293:25

    Article  CAS  PubMed  Google Scholar 

  7. Kazmierczak MJ, Wiedmann M, Boor KJ (2005) Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev 69(4):527–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yuzenkova Y, Tadigotla VR, Severinov K, Zenkin N (2011) A new basal promoter element recognized by RNA polymerase core enzyme. EMBO J 30(18):3766–3775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feklistov A, Sharon BD, Darst SA, Gross CA (2014) Bacterial sigma factors: a historical, structural, and genomic perspective. In: Gottesman S (ed) Annual review of microbiology. Annual Reviews, New York, NY

    Google Scholar 

  10. Paget MS (2015) Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules 5(3):1245–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dall’Alba G, Casa PL, Notari DL, Adami AG, Echeverrigaray S, Silva SDE (2019) Analysis of the nucleotide content of Escherichia coli promoter sequences related to the alternative sigma factors. J Mol Recognit 32:e2770. https://doi.org/10.1002/jmr.2770

    Article  CAS  PubMed  Google Scholar 

  12. Osterberg S, del Peso-Santos T, Shingler V (2011) Regulation of alternative sigma factor use. In: Gottesman S, Harwood CS (eds) Annual review of microbiology, vol 65. Annual Reviews, New York, NY

    Google Scholar 

  13. Kandavalli VK, Huy T, Ribeiro AS (2016) Effects of sigma factor competition are promoter initiation kinetics dependent. Biochim Biophys Acta Gene Regul Mech 1859(10):1281–1288

    Article  CAS  Google Scholar 

  14. Barker MM, Gaal T, Gourse RL (2001) Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP. J Mol Biol 305:689–702

    Article  CAS  PubMed  Google Scholar 

  15. Mauri M, Klumpp S (2014) A model for sigma factor competition in bacterial cells. PLoS Comp Biol 10:e1003845. https://doi.org/10.1371/journal.pcbi.1003845

    Article  CAS  Google Scholar 

  16. Klaholz BP (2017) The ribosome holds the RNA polymerase on track in bacteria. Trends Biochem Sci 42:686–689

    Article  CAS  PubMed  Google Scholar 

  17. Seo SW, Yang J, Min BE, Jang S, Lim JH, Lim HG, Kim SC, Kim SY, Jeong JH, Jung GY (2013) Synthetic biology: tools to design microbes for the production of chemicals and fuels. Biotechnol Adv 31:811–817

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Liu QT, Weng HJ, Shi YA, Chen J, Du GC, Kang Z (2019) Construction of synthetic promoters by assembling the sigma factor binding -35 and -10 boxes. Biotechnol J 14:e1800298. https://doi.org/10.1002/biot.201800298

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Shi YN, Hu LT, Du GC, Chen J, Kang Z (2019) Engineering strong and stress-responsive promoters in Bacillus subtilis by interlocking sigma factor binding motifs. Synth Syst Biotechnol 4:197–203

    Article  PubMed  PubMed Central  Google Scholar 

  20. Campagne S, Marsh ME, Capitani G, Vorholt JA, Allain FHT (2014) Structural basis for -10 promoter element melting by environmentally induced sigma factors. Nat Struct Mol Biol 21(3):269–276

    Article  CAS  PubMed  Google Scholar 

  21. Aghaabdollahian S, Rabbani M, Ghaedi K, Sadeghi HMM (2014) Molecular cloning of reteplase and its expression in E. coli using tac promoter. Adv Biomed Res 3:190

    Article  PubMed  PubMed Central  Google Scholar 

  22. Marbach A, Bettenbrock K (2012) Lac operon induction in Escherichia coli: systematic comparison of IPTG and TMG induction and influence of the transacetylase LacA. J Biotechnol 157:82–88

    Article  CAS  PubMed  Google Scholar 

  23. Cho H, Winans SC (2007) TraA, TraC and TraD autorepress two divergent quorum-regulated promoters near the transfer origin of the Ti plasmid of Agrobacterium tumefaciens. Mol Microbiol 63:1769–1782

    Article  CAS  PubMed  Google Scholar 

  24. Helmann JD (2019) Where to begin? Sigma factors and the selectivity of transcription initiation in bacteria. Mol Microbiol 112(2):335–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xia YZ, Li K, Li JJ, Wang TQ, Gu LC, Xun LY (2019) T5 exonuclease-dependent assembly offers a low-cost method for efficient cloning and site-directed mutagenesis. Nucleic Acids Res 47:e15. https://doi.org/10.1093/nar/gky1169

    Article  CAS  PubMed  Google Scholar 

  26. Mekler V, Pavlova O, Severinov K (2011) Interaction of Escherichia coli RNA polymerase sigma (70) subunit with promoter elements in the context of free sigma (70), rna polymerase holoenzyme, and the beta’-sigma (70) complex. J Biol Chem 286:270–279

    Article  CAS  PubMed  Google Scholar 

  27. Koo BM, Rhodius VA, Campbell EA, Gross CA (2009) Dissection of recognition determinants of Escherichia coli sigma(32) suggests a composite -10 region with an extended -10 motif and a core -10 element. Mol Microbiol 72:815–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burgess RR (2013) Sigma factors. In: Maloy S, Hughes K (eds) Brenner’s encyclopedia of genetics, 2nd edn. Academic Press, San Diego, CA

    Google Scholar 

  29. Das S, Noe JC, Paik S, Kitten T (2005) An improved arbitrary primed PCR method for rapid characterization of transposon insertion sites. J Microbiol Methods 63(1):89–94

    Article  CAS  PubMed  Google Scholar 

  30. Saez NJ, Vincentelli R (2014) High-throughput expression screening and purification of recombinant proteins in E. coli. Methods Mol Biol 1091:33–53

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (31970085, 32000058), the Jiangsu Province Natural Science Fund for Distinguished Young Scholars (BK20200025), the National Key R&D program of China (2018YFA0901400), a grant from the Key Technologies R&D Program of Jiangsu Province (BE2019630), and the National First-class Discipline Program of Light Industry Technology and Engineering (LITE2018-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, Y., Wang, Y., Li, J., Wang, C., Du, G., Kang, Z. (2022). Construction of Strong Promoters by Assembling Sigma Factor Binding Motifs. In: Currin, A., Swainston, N. (eds) Directed Evolution. Methods in Molecular Biology, vol 2461. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2152-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2152-3_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2151-6

  • Online ISBN: 978-1-0716-2152-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics