Skip to main content

Monitoring Transmembrane and Peripheral Membrane Protein Interactions by Förster Resonance Energy Transfer Using Fluorescence Lifetime Imaging Microscopy

  • Protocol
  • First Online:
Fluorescent Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2440))

Abstract

Caveolae are bulb-shaped invaginations of the plasma membrane that are enriched in specific lipids including cholesterol, phosphatidylserine and sphingolipids. Caveolae have many described cellular roles and functions, including endocytic transport, transcytosis, mechanosensing, and serving as a buffer against plasmalemmal stress. Caveola are formed through interactions between integral membrane proteins (Caveolin) and a cavin family of peripheral proteins (Cavins). Nearly half of the human proteome resides within or at the surface of membranes. Studying protein–protein interactions, especially of transmembrane domain containing proteins can be challenging. Fortunately, sophisticated biophysical methods allow for the monitoring of protein interactions in intact cells. Here, we describe the principles of Förster resonance energy transfer, fluorescence lifetime, and how their properties can be used to assess protein–protein interactions. Additionally, we discuss and demonstrate how fluorescence lifetime can be monitored microscopically thereby providing caveolin–cavin interaction data from living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stokes GG (1852) On the change of refrangibility of light. Phil Trans R Soc (London) 142:463–562

    Article  Google Scholar 

  2. O’Connor D (2012) Time-correlated single photon counting. Academic Press, New York

    Google Scholar 

  3. Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110:2641–2684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ishikawa-Ankerhold HC, Ankerhold R, Drummen GPC (2012) Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17:4047–4132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jablonski A (1933) Efficiency of anti-Stokes fluorescence in dyes. Nature 131:839–840

    Article  CAS  Google Scholar 

  6. Sauer M, Hofkens J, Enderlein J (2010) Handbook of fluorescence spectroscopy and imaging: from ensemble to single molecules. Wiley, Hoboken, NJ

    Google Scholar 

  7. Förster T (1947) Fluoreszenzversuche an Farbstoffmischungen. Angew Chem A 59:181–187

    Google Scholar 

  8. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 437:55–75

    Article  Google Scholar 

  9. Forster T (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 33:166–175

    Article  CAS  Google Scholar 

  10. Forster T (1951) Fluoreszenz organischer Verbindungen. Vandenhoeck und Ruprecht, Göttingen

    Google Scholar 

  11. Clegg RM (2006) The history of Fret. In: Geddes CD, Lakowicz JR (eds) Reviews in fluorescence 2006. Springer US, Boston, MA, pp 1–45

    Google Scholar 

  12. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer science & business media, New York, NY

    Book  Google Scholar 

  13. Berney C, Danuser G (2003) FRET or no FRET: a quantitative comparison. Biophys J 84:3992–4010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. dos Remedios CG, Moens PD (1995) Fluorescence resonance energy transfer spectroscopy is a reliable “ruler” for measuring structural changes in proteins. Dispelling the problem of the unknown orientation factor. J Struct Biol 115:175–185

    Article  PubMed  Google Scholar 

  15. Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819–846

    Article  CAS  PubMed  Google Scholar 

  16. Lakowicz JR (2010) Frequency-domain lifetime measurements. In: Principles of fluorescence spectroscopy. Springer, Boston, MA, pp 157–204

    Google Scholar 

  17. Patterson GH, Piston DW, Barisas BG (2000) Förster distances between green fluorescent protein pairs. Anal Biochem 284:438–440

    Article  CAS  PubMed  Google Scholar 

  18. Wu P, Brand L (1994) Resonance energy transfer: methods and applications. Anal Biochem 218:1–13

    Article  CAS  PubMed  Google Scholar 

  19. Vogel SS, Thaler C, Koushik SV (2006) Fanciful FRET. Sci STKE 2006:re2

    Article  PubMed  Google Scholar 

  20. Hunt J, Keeble AH, Dale RE et al (2012) A fluorescent biosensor reveals conformational changes in human immunoglobulin E Fc: implications for mechanisms of receptor binding, inhibition, and allergen recognition. J Biol Chem 287:17459–17470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harpur AG, Wouters FS, Bastiaens PI (2001) Imaging FRET between spectrally similar GFP molecules in single cells. Nat Biotechnol 19:167–169

    Article  CAS  PubMed  Google Scholar 

  22. Hötzer B, Ivanov R, Altmeier S et al (2011) Determination of copper(II) ion concentration by lifetime measurements of green fluorescent protein. J Fluoresc 21:2143–2153

    Article  CAS  PubMed  Google Scholar 

  23. Bastiaens PI, Squire A (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol 9:48–52

    Article  CAS  PubMed  Google Scholar 

  24. Chen Y, Mills JD, Periasamy A (2003) Protein localization in living cells and tissues using FRET and FLIM. Differentiation 71:528–541

    Article  CAS  PubMed  Google Scholar 

  25. Pietraszewska-Bogiel A, Gadella TWJ (2011) FRET microscopy: from principle to routine technology in cell biology. J Microsc 241:111–118

    Article  CAS  PubMed  Google Scholar 

  26. Auksorius E, Boruah BR, Dunsby C et al (2008) Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging. Opt Lett 33:113–115

    Article  PubMed  Google Scholar 

  27. Borst JW, Visser AJ (2010) Fluorescence lifetime imaging microscopy in life sciences. Meas Sci Technol 21:102002

    Article  CAS  Google Scholar 

  28. Day RN, Davidson MW (2012) Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells. BioEssays 34:341–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bajar BT, Wang ES, Zhang S et al (2016) A guide to fluorescent protein FRET pairs. Sensors (Basel) 16:1–24

    Article  CAS  Google Scholar 

  30. Hill MM, Bastiani M, Luetterforst R et al (2008) PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132:113–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tramier M, Zahid M, Mevel J-C et al (2006) Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microsc Res Tech 69:933–939

    Article  CAS  PubMed  Google Scholar 

  32. Koushik SV, Chen H, Thaler C, Puhl HL, Vogel SS (2006) Cerulean, Venus, and VenusY67C FRET reference standards. Biophys J. 91(12):L99–L101

    Google Scholar 

Download references

Acknowledgments

Original work in the laboratory of G.D.F. is supported by the Canadian Institutes of Health Research (Grants: PJT166010 and PJT165968) and the Natural Sciences and Engineering Research Council of Canada. Figures 13 were generated using BioRender.com.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory D. Fairn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nagwekar, J., Di Ciano-Oliveira, C., Fairn, G.D. (2022). Monitoring Transmembrane and Peripheral Membrane Protein Interactions by Förster Resonance Energy Transfer Using Fluorescence Lifetime Imaging Microscopy. In: Heit, B. (eds) Fluorescent Microscopy. Methods in Molecular Biology, vol 2440. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2051-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2051-9_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2050-2

  • Online ISBN: 978-1-0716-2051-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics