Skip to main content

Single-Molecule Localization Microscopy of Subcellular Protein Distribution in Neurons

  • Protocol
  • First Online:
Fluorescent Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2440))

Abstract

Over the past years several forms of superresolution fluorescence microscopy have been developed that offer the possibility to study cellular structures and protein distribution at a resolution well below the diffraction limit of conventional fluorescence microscopy (<200 nm). A particularly powerful superresolution technique is single-molecule localization microscopy (SMLM). SMLM enables the quantitative investigation of subcellular protein distribution at a spatial resolution up to tenfold higher than conventional imaging, even in live cells. Not surprisingly, SMLM has therefore been used in many applications in biology, including neuroscience. This chapter provides a step-by-step SMLM protocol to visualize the nanoscale organization of endogenous proteins in dissociated neurons but can be extended to image other adherent cultured cells. We outline a number of methods to visualize endogenous proteins in neurons for live-cell and fixed application, including immunolabeling, the use of intrabodies for live-cell SMLM, and endogenous tagging using CRISPR/Cas9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vangindertael J, Camacho R, Sempels W, Mizuno H, Dedecker P, Janssen KPF (2018) An introduction to optical super-resolution microscopy for the adventurous biologist. Methods Appl Fluoresc 6(2):022003. https://doi.org/10.1088/2050-6120/aaae0c

    Article  CAS  PubMed  Google Scholar 

  2. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783. https://doi.org/10.1016/S0006-3495(02)75618-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gould TJ, Verkhusha VV, Hess ST (2009) Imaging biological structures with fluorescence photoactivation localization microscopy. Nat Protoc 4(3):291–308. https://doi.org/10.1038/nprot.2008.246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. https://doi.org/10.1126/science.1127344

    Article  PubMed  Google Scholar 

  5. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272. https://doi.org/10.1529/biophysj.106.091116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795. https://doi.org/10.1038/nmeth929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47(33):6172–6176. https://doi.org/10.1002/anie.200802376

    Article  CAS  PubMed  Google Scholar 

  8. Jungmann R, Avendano MS, Woehrstein JB, Dai M, Shih WM, Yin P (2014) Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and exchange-PAINT. Nat Methods 11(3):313–318. https://doi.org/10.1038/nmeth.2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Balzarotti F, Eilers Y, Gwosch KC, Gynna AH, Westphal V, Stefani FD, Elf J, Hell SW (2017) Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355(6325):606–612. https://doi.org/10.1126/science.aak9913

    Article  CAS  PubMed  Google Scholar 

  10. Li H, Vaughan JC (2018) Switchable fluorophores for single-molecule localization microscopy. Chem Rev 118(18):9412–9454. https://doi.org/10.1021/acs.chemrev.7b00767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8(12):1027–1036. https://doi.org/10.1038/nmeth.1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Samanta S, Gong W, Li W, Sharma A, Shim I, Zhang W, Das P, Pan W, Liu L, Yang Z, Qu J, Kim JS (2019) Organic fluorescent probes for stochastic optical reconstruction microscopy (STORM): recent highlights and future possibilities. Coord Chem Rev 380:17–34. https://doi.org/10.1016/j.ccr.2018.08.006

    Article  CAS  Google Scholar 

  13. Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3(6):373–382. https://doi.org/10.1021/cb800025k

    Article  CAS  PubMed  Google Scholar 

  14. Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21(1):86–89. https://doi.org/10.1038/nbt765

    Article  CAS  PubMed  Google Scholar 

  15. Gautier A, Juillerat A, Heinis C, Correa IR Jr, Kindermann M, Beaufils F, Johnsson K (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15(2):128–136. https://doi.org/10.1016/j.chembiol.2008.01.007

    Article  CAS  PubMed  Google Scholar 

  16. Jacquemet G, Carisey AF, Hamidi H, Henriques R, Leterrier C (2020) The cell biologist's guide to super-resolution microscopy. J Cell Sci 133(11). https://doi.org/10.1242/jcs.240713

  17. Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, Drummen GPC (2019) Super-resolution microscopy demystified. Nat Cell Biol 21(1):72–84. https://doi.org/10.1038/s41556-018-0251-8

    Article  CAS  PubMed  Google Scholar 

  18. Wait EC, Reiche MA, Chew TL (2020) Hypothesis-driven quantitative fluorescence microscopy - the importance of reverse-thinking in experimental design. J Cell Sci 133(21). https://doi.org/10.1242/jcs.250027

  19. Wu YL, Tschanz A, Krupnik L, Ries J (2020) Quantitative data analysis in single-molecule localization microscopy. Trends Cell Biol 30(11):837–851. https://doi.org/10.1016/j.tcb.2020.07.005

    Article  CAS  PubMed  Google Scholar 

  20. Jimenez A, Friedl K, Leterrier C (2020) About samples, giving examples: optimized single molecule localization microscopy. Methods 174:100–114. https://doi.org/10.1016/j.ymeth.2019.05.008

    Article  CAS  PubMed  Google Scholar 

  21. Yang X, Specht CG (2020) Practical guidelines for two-color SMLM of synaptic proteins in cultured neurons. In: Yamamoto N, Okada Y (eds) Single molecule microscopy in neurobiology. Neuromethods Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0532-5_9

    Chapter  Google Scholar 

  22. Willems J, de Jong APH, Scheefhals N, Mertens E, Catsburg LAE, Poorthuis RB, de Winter F, Verhaagen J, Meye FJ, MacGillavry HD (2020) ORANGE: a CRISPR/Cas9-based genome editing toolbox for epitope tagging of endogenous proteins in neurons. PLoS Biol 18(4):e3000665. https://doi.org/10.1371/journal.pbio.3000665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gross GG, Junge JA, Mora RJ, Kwon HB, Olson CA, Takahashi TT, Liman ER, Ellis-Davies GC, McGee AW, Sabatini BL, Roberts RW, Arnold DB (2013) Recombinant probes for visualizing endogenous synaptic proteins in living neurons. Neuron 78(6):971–985. https://doi.org/10.1016/j.neuron.2013.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Babcock H, Sigal YM, Zhuang X (2012) A high-density 3D localization algorithm for stochastic optical reconstruction microscopy. Opt Nanoscopy 1(6). https://doi.org/10.1186/2192-2853-1-6

  25. Schnitzbauer J, Strauss MT, Schlichthaerle T, Schueder F, Jungmann R (2017) Super-resolution microscopy with DNA-PAINT. Nat Protoc 12(6):1198–1228. https://doi.org/10.1038/nprot.2017.024

    Article  CAS  PubMed  Google Scholar 

  26. Ovesny M, Krizek P, Borkovec J, Svindrych Z, Hagen GM (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30(16):2389–2390. https://doi.org/10.1093/bioinformatics/btu202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chazeau A, Katrukha EA, Hoogenraad CC, Kapitein LC (2016) Studying neuronal microtubule organization and microtubule-associated proteins using single molecule localization microscopy. Methods Cell Biol 131:127–149. https://doi.org/10.1016/bs.mcb.2015.06.017

    Article  PubMed  Google Scholar 

  28. Aristov A, Lelandais B, Rensen E, Zimmer C (2018) ZOLA-3D allows flexible 3D localization microscopy over an adjustable axial range. Nat Commun 9(1):2409. https://doi.org/10.1038/s41467-018-04709-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Y, Mund M, Hoess P, Deschamps J, Matti U, Nijmeijer B, Sabinina VJ, Ellenberg J, Schoen I, Ries J (2018) Real-time 3D single-molecule localization using experimental point spread functions. Nat Methods 15(5):367–369. https://doi.org/10.1038/nmeth.4661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ries J (2020) SMAP: a modular super-resolution microscopy analysis platform for SMLM data. Nat Methods 17(9):870–872. https://doi.org/10.1038/s41592-020-0938-1

    Article  CAS  PubMed  Google Scholar 

  31. Speiser A, Muller L-R, Matti U, Obara CJ, Legant WR, Kreshuk A, Macke JH, Ries J, Turaga SC (2020) Deep learning enables fast and dense single-molecule localization with high accuracy. BioRxiv. https://doi.org/10.1101/2020.10.26.355164

  32. Mund M, Ries J (2020) How good are my data? Reference standards in superresolution microscopy. Mol Biol Cell 31(19):2093–2096. https://doi.org/10.1091/mbc.E19-04-0189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. MacGillavry HD, Song Y, Raghavachari S, Blanpied TA (2013) Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors. Neuron 78(4):615–622. https://doi.org/10.1016/j.neuron.2013.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Khater IM, Nabi IR, Hamarneh G (2020) A review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods. Patterns (N Y) 1(3):100038. https://doi.org/10.1016/j.patter.2020.100038

    Article  Google Scholar 

  35. Baddeley D, Bewersdorf J (2018) Biological insight from super-resolution microscopy: what we can learn from localization-based images. Annu Rev Biochem 87:965–989. https://doi.org/10.1146/annurev-biochem-060815-014801

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Netherlands Organization for Scientific Research (ALW-VIDI 171.029 to H.D.M.) and the European Research Council (ERC-StG 716011 to H.D.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold D. MacGillavry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Willems, J., Westra, M., MacGillavry, H.D. (2022). Single-Molecule Localization Microscopy of Subcellular Protein Distribution in Neurons. In: Heit, B. (eds) Fluorescent Microscopy. Methods in Molecular Biology, vol 2440. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2051-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2051-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2050-2

  • Online ISBN: 978-1-0716-2051-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics