Skip to main content

Adverse Outcome Pathways as Versatile Tools in Liver Toxicity Testing

  • Protocol
  • First Online:
In Silico Methods for Predicting Drug Toxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2425))

Abstract

Adverse outcome pathways (AOPs) are tools to capture and visualize mechanisms driving toxicological effects. They share a common structure consisting of a molecular initiating event, a series of key events connected by key event relationships and an adverse outcome. Development and evaluation of AOPs ideally comply with guidelines issued by the Organization for Economic Cooperation and Development. AOPs have been introduced for major types of hepatotoxicity, which is not a surprise, as the liver is a frequent target for systemic adversity. Various applications for AOPs have been proposed in the areas of toxicology and chemical risk assessment, in particular in relation to the establishment of quantitative structure–activity relationships, the elaboration of prioritization strategies, and the development of novel in vitro toxicity screening tests and testing strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. OECD (2013) OECD series on testing and assessment number 184: guidance document on developing and assessing adverse outcome pathways ENV/JM/MONO(2013)6. OECD Publishing, Paris, pp 1–45

    Google Scholar 

  2. US EPA (2005) Guidelines for carcinogen risk assessment. US EPA, Washington DC

    Google Scholar 

  3. Bogdanffy MS, Daston G, Faustman EM, Kimmel CA, Kimmel GL, Seed J et al (2001) Harmonization of cancer and noncancer risk assessment: proceedings of a consensus-building workshop. Toxicol Sci 61:18–31

    Article  CAS  PubMed  Google Scholar 

  4. Julien E, Boobis AR, Olin SS (2009) The key events dose-response framework: a cross-disciplinary mode-of-action based approach to examining dose-response and thresholds. Crit Rev Food Sci Nutr 49:682–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meek ME, Bucher JR, Cohen SM, Dellarco V, Hill RN, Lehman-McKeeman LD et al (2003) A framework for human relevance analysis of information on carcinogenic modes of action. Crit Rev Toxicol 33:591–653

    Article  PubMed  Google Scholar 

  6. Seed J, Carney EW, Corley RA et al (2005) Overview: using mode of action and life stage information to evaluate the human relevance of animal toxicity data. Crit Rev Toxicol 35:664–672

    Article  PubMed  Google Scholar 

  7. NRC (2007) Toxicity testing in the 21st century: a vision and a strategy. The National Academies Press, Washington DC

    Google Scholar 

  8. Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD et al (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741

    Article  CAS  PubMed  Google Scholar 

  9. Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA et al (2014) Adverse outcome pathway (AOP) development I: strategies and principles. Toxicol Sci 142:312–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Becker RA, Ankley GT, Edwards SW, Kennedy SW, Linkov I, Meek B et al (2015) Increasing scientific confidence in adverse outcome pathways: application of tailored Bradford-Hill considerations for evaluating weight of evidence. Regul Toxicol Pharmacol 72:514–537

    Article  PubMed  Google Scholar 

  11. Burden N, Sewell F, Andersen ME, Boobis A, Chipman JK, Cronin MTD et al (2015) Adverse outcome pathways can drive non-animal approaches for safety assessment. J Appl Toxicol 35:971–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vinken M, Knapen D, Vergauwen L, Hengstler JG, Angrish M, Whelan M (2017) Adverse outcome pathways: a concise introduction for toxicologists. Arch Toxicol 91:3697–3707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Edwards SW, Tan YM, Villeneuve DL, Meek ME, McQueen CA (2016) Adverse outcome pathways: organizing toxicological information to improve decision making. J Pharmacol Exp Ther 356:170–181

    Article  CAS  PubMed  Google Scholar 

  14. Perkins EJ, Antczak P, Burgoon L, Falciani F, Garcia-Reyero N, Gutsell S et al (2015) Adverse outcome pathways for regulatory applications: examination of four case studies with different degrees of completeness and scientific confidence. Toxicol Sci 148:14–25

    Article  CAS  PubMed  Google Scholar 

  15. OECD (2017) OECD series on testing and assessment number 184: revised guidance document on developing and assessing adverse outcome pathways ENV/JM/MONO(2013)6. OECD Publishing, Paris, pp 1–32

    Google Scholar 

  16. http://aopkb.org/ (consulted July 2020)

  17. OECD (2016) OECD series on adverse outcome pathways number 1: users’ handbook supplement to the guidance document for developing and assessing adverse outcome pathways. OECD Publishing, Paris, pp 1–53

    Google Scholar 

  18. Delrue N, Sachana M, Sakuratani Y, Gourmelon A, Leinala E, Diderich R (2016) The adverse outcome pathway concept: a basis for developing regulatory decision-making tools. Altern Lab Anim 44:417–429

    Article  PubMed  Google Scholar 

  19. https://aopwiki.org/ (consulted July 2020)

  20. Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA et al (2014) Adverse outcome pathway development II: best practices. Toxicol Sci 142:321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ankley GT, Edwards SW (2018) The adverse outcome pathway: a multifaceted framework supporting 21st century toxicology. Curr Opin Toxicol 1:1–7

    Google Scholar 

  22. Leist M, Ghallab A, Graepel R, Marchan R, Hassan R, Bennekou SH et al (2017) Adverse outcome pathways: opportunities, limitations and open questions. Arch Toxicol 91:3477–3505

    Article  CAS  PubMed  Google Scholar 

  23. Carusi A, Davies MR, De Grandis G, Escher BI, Hodges G, Leung KMY et al (2018) Harvesting the promise of AOPs: an assessment and recommendations. Sci Total Environ 628-629:1542–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gijbels E, Vinken M (2017) An update on adverse outcome pathways leading to liver injury. Appl In Vitro Toxicol 3:283–285

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bell SM, Angrish MM, Wood CE, Edwards SW (2016) Integrating publicly available data to generate computationally predicted adverse outcome pathways for fatty liver. Toxicol Sci 150:510–520

    Article  CAS  PubMed  Google Scholar 

  26. Oki NO, Edwards SW (2016) An integrative data mining approach to identifying adverse outcome pathway signatures. Toxicology 350-352:49–61

    Article  CAS  PubMed  Google Scholar 

  27. Oki NO, Nelms MD, Bell SM, Mortensen HM, Edwards SW (2016) Accelerating adverse outcome pathway development using publicly available data sources. Curr Environ Health Rep 3:53–63

    Article  PubMed  Google Scholar 

  28. Perkins EJ, Ashauer R, Burgoon L, Conolly R, Landesmann B, Mackay C et al (2019) Building and applying quantitative adverse outcome pathway models for chemical hazard and risk assessment. Environ Toxicol Chem 38:1850–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Spinu N, Cronin MTD, Enoch SJ, Madden JC, Worth AP (2020) Quantitative adverse outcome pathway (qAOP) models for toxicity prediction. Arch Toxicol 94:1497–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Knapen D, Angrish MM, Fortin MC, Katsiadaki I, Leonard M, Margiotta-Casaluci L et al (2018) Adverse outcome pathway networks I: development and applications. Environ Toxicol Chem 37:1723–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Villeneuve DL, Angrish MM, Fortin MC, Katsiadaki I, Leonard M, Margiotta-Casaluci L et al (2018) Adverse outcome pathway networks II: network analytics. Environ Toxicol Chem 37:1734–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hill AB (1965) The environment and disease: association or causation? Proc R Soc Med 58:295–300

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Vinken M, Maes M, Vanhaecke T, Rogiers V (2013) Drug-induced liver injury: mechanisms, types and biomarkers. Curr Med Chem 20:3011–3021

    Article  CAS  PubMed  Google Scholar 

  34. AbdulHameed MDM, Pannala VR, Wallqvist A (2019) Mining public toxicogenomic data reveals insights and challenges in delineating liver steatosis adverse outcome pathways. Front Genet 10:1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mellor CL, Steinmetz FP, Cronin MT (2016) The identification of nuclear receptors associated with hepatic steatosis to develop and extend adverse outcome pathways. Crit Rev Toxicol 46:138–152

    Article  CAS  PubMed  Google Scholar 

  36. Vinken M, Landesmann B, Goumenou M, Vinken S, Shah I, Jaeschke H et al (2013) Development of an adverse outcome pathway from drug-mediated bile salt export pump inhibition to cholestatic liver injury. Toxicol Sci 136:97–106

    Article  CAS  PubMed  Google Scholar 

  37. Gijbels E, Vilas-Boas V, Annaert P, Vanhaecke T, Devisscher L, Vinken M (2020) Robustness testing and optimization of an adverse outcome pathway on cholestatic liver injury. Arch Toxicol 94:1151–1172

    Article  CAS  PubMed  Google Scholar 

  38. Horvat T, Landesmann B, Lostia A, Vinken M, Munn S, Whelan M (2017) Adverse outcome pathway development from protein alkylation to liver fibrosis. Arch Toxicol 91:1523–1543

    Article  CAS  PubMed  Google Scholar 

  39. Gadaleta D, Manganelli S, Roncaglioni A, Toma C, Benfenati E, Mombelli E (2018) QSAR modelling of ToxCast assays relevant to the molecular initiating events of AOPs leading to hepatic steatosis. J Chem Inf Model 58:1501–1517

    Article  CAS  PubMed  Google Scholar 

  40. Hirano H, Kurata A, Onishi Y, Sakurai A, Siato H, Nakagawa H et al (2006) High-speed screening and QSAR analysis of human ATP-binding cassette transporter ABCB11 (bile salt export pump) to predict drug-induced intrahepatic cholestasis. Mol Pharm 2:252–265

    Article  Google Scholar 

  41. Saito H, Osumi M, Hirano H, Shin W, Nakamura R, Ishikawa T (2009) Technical pitfalls and improvements for high-speed screening and QSAR analysis to predict inhibitors of the human bile salt export pump (ABCB11/BSEP). AAPS J 11:581–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Warner DJ, Chen H, Cantin LD, Kenna JG, Stahl S, Walker CL et al (2012) Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification. Drug Metab Dispos 40:2332–2341

    Article  CAS  PubMed  Google Scholar 

  43. Honório KM, Salum LB, Garratt RC, Polikarpov I, Andricopulo AD (2008) Two- and three-dimensional quantitative structure–activity relationships studies on a series of liver X receptor ligands. Open Med Chem J 2:87–96

    Article  PubMed  PubMed Central  Google Scholar 

  44. Judson R, Kavlock R, Martin M, Reif D, Houck K, Knudsen T et al (2013) Perspectives on validation of high-throughput assays supporting 21st century toxicity testing. ALTEX 30:51–56

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yozzo KL, McGee SP, Volz DC (2013) Adverse outcome pathways during zebrafish embryogenesis: a case study with paraoxon. Aquat Toxicol 126:346–354

    Article  CAS  PubMed  Google Scholar 

  46. Oki NO, Farcal L, Abdelaziz A, Florean O, Doktorova TY, Exner T et al (2019) Integrated analysis of in vitro data and the adverse outcome pathway framework for prioritization and regulatory applications: an exploratory case study using publicly available data on piperonyl butoxide and liver models. Toxicol In Vitro 54:23–32

    Article  CAS  PubMed  Google Scholar 

  47. Rooney J, Hill T 3rd, Qin C, Sistare FD, Corton JC (2018) Adverse outcome pathway-driven identification of rat liver tumorigens in short-term assays. Toxicol Appl Pharmacol 356:99–113

    Article  CAS  PubMed  Google Scholar 

  48. Lichtenstein D, Luckert C, Alarcan J, de Sousa G, Gioutlakis M, Katsanou E et al (2020) An adverse outcome pathway-based approach to assess steatotic mixture effects of hepatotoxic pesticides in vitro. Food Chem Toxicol 139:111283

    Article  CAS  PubMed  Google Scholar 

  49. Khadka KK, Chen M, Liu Z, Tong W, Wang D (2020) Integrating adverse outcome pathways (AOPs) and high throughput in vitro assays for better risk evaluations, a study with drug-induced liver injury (DILI). ALTEX 37:187–196

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Cosmetics Europe, the European Chemical Industry Council, the European Marie-Curie Sklodowska Action programme (Individual Fellowship 833095), the Center for Alternatives to Animal Testing at Johns Hopkins University Baltimore-USA, the Research Foundation Flanders-Belgium (FWO-Vlaanderen), and the University Hospital of the Vrije Universiteit Brussel-Belgium (Willy Gepts Fonds UZ-Brussel).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Vinken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Arnesdotter, E., Gijbels, E., dos Santos Rodrigues, B., Vilas-Boas, V., Vinken, M. (2022). Adverse Outcome Pathways as Versatile Tools in Liver Toxicity Testing. In: Benfenati, E. (eds) In Silico Methods for Predicting Drug Toxicity. Methods in Molecular Biology, vol 2425. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1960-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1960-5_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1959-9

  • Online ISBN: 978-1-0716-1960-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics