Skip to main content

Means to Quantify Vascular Cell File Numbers in Different Tissues

  • Protocol
  • First Online:
Plant Cell Division

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2382))

Abstract

Oriented cell divisions are crucial throughout plant development to define the final size and shape of organs and tissues. As most of the tissues in mature roots and stems are derived from vascular tissues, studying cell proliferation in the vascular cell lineage is of great importance. Although perturbations of vascular development are often visible already at the whole plant macroscopic phenotype level, a more detailed characterization of the vascular anatomy, cellular organization, and differentiation status of specific vascular cell types can provide insights into which pathway or developmental program is affected. In particular, defects in the frequency or orientation of cell divisions can be reliably identified from the number of vascular cell files. Here, we provide a detailed description of the different clearing, staining, and imaging techniques that allow precise phenotypic analysis of vascular tissues in different organs of the model plant Arabidopsis thaliana throughout development, including the quantification of cell file numbers, differentiation status of vascular cell types, and expression of reporter genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. De Rybel B, Mähönen AP, Helariutta Y, Weijers D (2016) Plant vascular development: from early specification to differentiation. Nat Rev Mol Cell Biol 17:30–40. https://doi.org/10.1038/nrm.2015.6

    Article  CAS  PubMed  Google Scholar 

  2. Lucas WJ, Groover A, Lichtenberger R et al (2013) The plant vascular system: evolution, development and functions. J Integr Plant Biol 55:294–388. https://doi.org/10.1111/jipb.12041

    Article  CAS  PubMed  Google Scholar 

  3. Scheres B, Wolkenfelt H, Willemsen V et al (1994) Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–2487

    Article  CAS  Google Scholar 

  4. De Rybel B, Möller B, Yoshida S et al (2013) A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. Dev Cell 24:426–437. https://doi.org/10.1016/J.DEVCEL.2012.12.013

    Article  PubMed  Google Scholar 

  5. Yoshida S, BarbierdeReuille P, Lane B et al (2014) Genetic control of plant development by overriding a geometric division rule. Dev Cell 29:75–87. https://doi.org/10.1016/j.devcel.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  6. De Rybel B, Adibi M, Breda AS et al (2014) Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345(6197):1255215. https://doi.org/10.1126/science.1255215

    Article  CAS  PubMed  Google Scholar 

  7. Mähönen AP, Bonke M, Kauppinen L et al (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 14:2938–2943. https://doi.org/10.1101/gad.189200

    Article  PubMed  PubMed Central  Google Scholar 

  8. Smetana O, Mäkilä R, Lyu M et al (2019) High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature 565(7740):485–489. https://doi.org/10.1038/s41586-018-0837-0

    Article  CAS  PubMed  Google Scholar 

  9. Shi D, Lebovka I, Loṕez-Salmeroń V et al (2019) Bifacial cambium stem cells generate xylem and phloem during radial plant growth. Development 146:dev171355. https://doi.org/10.1242/dev.171355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chiang MH, Greb T (2019) How to organize bidirectional tissue production? Curr Opin Plant Biol 51:15–21. https://doi.org/10.1016/j.pbi.2019.03.003

    Article  CAS  PubMed  Google Scholar 

  11. Sehr EM, Agusti J, Lehner R et al (2010) Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant J 63:811–822. https://doi.org/10.1111/j.1365-313X.2010.04283.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mazur E, Kurczyńska EU, Friml J (2014) Cellular events during interfascicular cambium ontogenesis in inflorescence stems of Arabidopsis. Protoplasma 251:1125–1139. https://doi.org/10.1007/s00709-014-0620-5

    Article  CAS  PubMed  Google Scholar 

  13. Nieminen K, Blomster T, Helariutta Y, Mähönen AP (2015) Vascular cambium development. Arabidopsis Book 13:e0177. https://doi.org/10.1199/tab.0177

    Article  PubMed  PubMed Central  Google Scholar 

  14. Scheres B, Di Laurenzio L, Willemsen V et al (1995) Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121:53–62

    Article  CAS  Google Scholar 

  15. Mähönen AP, Higuchi M, Törmäkangas K et al (2006) Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis. Curr Biol 16:1116–1122. https://doi.org/10.1016/j.cub.2006.04.030

    Article  CAS  PubMed  Google Scholar 

  16. Truernit E, Bauby H, Belcram K et al (2012) OCTOPUS, a polarly localised membrane-associated protein, regulates phloem differentiation entry in Arabidopsis thaliana. Development 139:1306–1315. https://doi.org/10.1242/dev.072629

    Article  CAS  PubMed  Google Scholar 

  17. Scacchi E, Osmont KS, Beuchat J et al (2009) Dynamic, auxin-responsive plasma membrane-to-nucleus movement of Arabidopsis BRX. Development 136:2059–2067. https://doi.org/10.1242/dev.035444

    Article  CAS  PubMed  Google Scholar 

  18. Mähönen AP, Bishopp A, Higuchi M et al (2006) Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311(5757):94–98. https://doi.org/10.1126/science.1118875

    Article  CAS  PubMed  Google Scholar 

  19. Miyashima S, Roszak P, Sevilem I et al (2019) Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Nature 565:490–494. https://doi.org/10.1038/s41586-018-0839-y

    Article  CAS  PubMed  Google Scholar 

  20. Smet W, Sevilem I, de Luis Balaguer MA et al (2019) DOF2.1 controls cytokinin-dependent vascular cell proliferation downstream of TMO5/LHW. Curr Biol 29:520–529. https://doi.org/10.1016/J.CUB.2018.12.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ohashi-Ito K, Bergmann DC (2007) Regulation of the Arabidopsis root vascular initial population by Lonesome highway. Development 134:2959–2968. https://doi.org/10.1242/dev.006296

    Article  CAS  PubMed  Google Scholar 

  22. Ohashi-Ito K, Matsukawa M, Fukuda H (2013) An atypical bHLH transcription factor regulates early xylem development downstream of auxin. Plant Cell Physiol 54:398–405. https://doi.org/10.1093/pcp/pct013

    Article  CAS  PubMed  Google Scholar 

  23. Ohashi-Ito K, Oguchi M, Kojima M et al (2013) Auxin-associated initiation of vascular cell differentiation by LONESOME HIGHWAY. Development 140:765–769. https://doi.org/10.1242/dev.087924

    Article  CAS  PubMed  Google Scholar 

  24. Ohashi-Ito K, Saegusa M, Iwamoto K et al (2014) A bHLH complex activates vascular cell division via cytokinin action in root apical meristem. Curr Biol 24:2053–2058. https://doi.org/10.1016/j.cub.2014.07.050

    Article  CAS  PubMed  Google Scholar 

  25. Smet W, De Rybel B (2016) Genetic and hormonal control of vascular tissue proliferation. Curr Opin Plant Biol 29:50–56. https://doi.org/10.1016/J.PBI.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  26. Truernit E, Bauby H, Dubreucq B et al (2008) High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis. Plant Cell 20:1494–1503. https://doi.org/10.1105/tpc.107.056069

    Article  PubMed  PubMed Central  Google Scholar 

  27. Warner CA, Biedrzycki ML, Jacobs SS et al (2014) An optical clearing technique for plant tissues allowing deep imaging and compatible with fluorescence microscopy. Plant Physiol 166:1684–1687. https://doi.org/10.1104/pp.114.244673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kurihara D, Mizuta Y, Sato Y, Higashiyama T (2015) ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development 142:4168–4179. https://doi.org/10.1242/dev.127613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ursache R, Andersen TG, Marhavý P, Geldner N (2018) A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. Plant J 93:399–412. https://doi.org/10.1111/tpj.13784

    Article  CAS  PubMed  Google Scholar 

  30. Beeckman T, Viane R (2000) Embedding thin plant specimens for oriented sectioning. Biotech Histochem 75:23–26

    Article  CAS  PubMed  Google Scholar 

  31. De Smet I, Chaerle P, Vanneste S et al (2004) An easy and versatile embedding method for transverse sections. J Microsc 213:76–80. https://doi.org/10.1111/j.1365-2818.2004.01269.x

    Article  PubMed  Google Scholar 

  32. Frohlich VC (2008) Phase contrast and differential interference contrast (DIC) microscopy. J Vis Exp (17):844. https://doi.org/10.3791/844

  33. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  34. Rosenberg M, Bartl P, Leško J (1960) Water-soluble methacrylate as an embedding medium for the preparation of ultrathin sections. J Ultrasruct Res 4:298–303. https://doi.org/10.1016/S0022-5320(60)80024-X

    Article  CAS  Google Scholar 

  35. Litwin JA (1985) Light microscopic histochemistry on plastic sections. Prog Histochem Cytochem 16:3–5. https://doi.org/10.1016/S0079-6336(85)80001-2

    Article  Google Scholar 

  36. Yeung EC, Chan CKW (2015) The glycol methacrylate embedding resins-Technovit 7100 and 8100. In: Plant microtechniques and protocols. Springer International Publishing, Berlin, pp 67–82

    Chapter  Google Scholar 

  37. de Oliveira JMS (2015) Simultaneous dehydration and infiltration with (2-hydroxyethyl)- methacrylate (HEMA) for lipid preservation in plant tissues. Acta Bot Brasilica 29:207–212. https://doi.org/10.1590/0102-33062014abb3755

    Article  Google Scholar 

  38. Idänheimo N, Gauthier A, Salojärvi J et al (2014) The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress. Biochem Biophys Res Commun 445:457–462. https://doi.org/10.1016/j.bbrc.2014.02.013

    Article  CAS  PubMed  Google Scholar 

  39. Musielak TJ, Schenkel L, Kolb M et al (2015) A simple and versatile cell wall staining protocol to study plant reproduction. Plant Reprod 28:161–169. https://doi.org/10.1007/s00497-015-0267-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pradhan Mitra P, Loqué D (2014) Histochemical staining of Arabidopsis thaliana secondary cell wall elements. J Vis Exp (87):51381. https://doi.org/10.3791/51381

  41. Chaffey N, Cholewa E, Regan S, Sundberg B (2002) Secondary xylem development in Arabidopsis: a model for wood formation. Physiol Plant 114:594–600. https://doi.org/10.1034/j.1399-3054.2002.1140413.x

    Article  CAS  PubMed  Google Scholar 

  42. de Reuille PB, Ragni L (2017) Vascular morphodynamics during secondary growth. In: Methods in molecular biology. Humana Press Inc., pp 103–125

    Google Scholar 

Download references

Acknowledgments

This work was funded by the European Research Council (ERC Starting Grant TORPEDO-714055); and an EMBO long-term fellowship (ALTF 1005-2019) to M.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert De Rybel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Arents, H.E., Eswaran, G., Glanc, M., Mähönen, A.P., De Rybel, B. (2022). Means to Quantify Vascular Cell File Numbers in Different Tissues. In: Caillaud, MC. (eds) Plant Cell Division. Methods in Molecular Biology, vol 2382. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1744-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1744-1_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1743-4

  • Online ISBN: 978-1-0716-1744-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics