Skip to main content

Assessment of Mitochondrial DNA Copy Number, Stability, and Repair in Arabidopsis

  • Protocol
  • First Online:
Plant Mitochondria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2363))

Abstract

Mitochondrial functions depend on the proper maintenance and expression of the mitochondrial genome (mtDNA). Therefore, understanding mtDNA replication and repair requires methods to assess its integrity. Mutations or chemical treatments that affect processes involved in the maintenance or stability of the mtDNA can affect its global copy number, but also the relative abundance of different genomic regions or the frequency of illegitimate recombination across repeated sequences. These can be conveniently tested by quantitative PCR (qPCR). Arabidopsis thaliana offers several advantages for studying these processes, because of the extensive collections of mutants, natural accessions and other genetic resources available from stock centers. Here we describe protocols we routinely use to explore changes in mtDNA copy number and relative stoichiometry in Arabidopsis mutants of genes involved in the replication, repair and recombination of the mtDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gray MW (2012) Mitochondrial evolution. Cold Spring Harb Perspect Biol 4:a011403. https://doi.org/10.1101/cshperspect.a011403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gualberto JM, Newton KJ (2017) Plant mitochondrial genomes: dynamics and mechanisms of mutation. Annu Rev Plant Biol 68:225–252. https://doi.org/10.1146/annurev-arplant-043015-112232

    Article  CAS  PubMed  Google Scholar 

  3. Arrieta-Montiel MP, Shedge V, Davila J, Christensen AC, Mackenzie SA (2009) Diversity of the Arabidopsis mitochondrial genome occurs via nuclear-controlled recombination activity. Genetics 183:1261–1268. https://doi.org/10.1534/genetics.109.108514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Christensen AC (2018) Mitochondrial DNA repair and genome evolution. Annual Plant Reviews online, pp 11–32. https://doi.org/10.1002/9781119312994.apr0544

    Book  Google Scholar 

  5. Wu Z, Waneka G, Broz AK, King CR, Sloan DB (2020) MSH1 is required for maintenance of the low mutation rates in plant mitochondrial and plastid genomes. Proc Natl Acad Sci U S A 117:16448–16455. https://doi.org/10.1073/pnas.2001998117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wallet C, Le Ret M, Bergdoll M, Bichara M, Dietrich A, Gualberto JM (2015) The RECG1 DNA translocase is a key factor in recombination surveillance, repair, and segregation of the mitochondrial DNA in Arabidopsis. Plant Cell 27:2907–2925. https://doi.org/10.1105/tpc.15.00680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miller-Messmer M, Kuhn K, Bichara M, Le Ret M, Imbault P, Gualberto JM (2012) RecA-dependent DNA repair results in increased heteroplasmy of the Arabidopsis mitochondrial genome. Plant Physiol 159:211–226. https://doi.org/10.1104/pp.112.194720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shedge V, Arrieta-Montiel M, Christensen AC, Mackenzie SA (2007) Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs. Plant Cell 19:1251–1264. https://doi.org/10.1105/tpc.106.048355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Preuten T, Cincu E, Fuchs J, Zoschke R, Liere K, Borner T (2010) Fewer genes than organelles: extremely low and variable gene copy numbers in mitochondria of somatic plant cells. Plant J 64:948–959. https://doi.org/10.1111/j.1365-313X.2010.04389.x

    Article  CAS  PubMed  Google Scholar 

  10. Moraes CT (2001) What regulates mitochondrial DNA copy number in animal cells? Trends Genet 17:199–205. https://doi.org/10.1016/s0168-9525(01)02238-7

    Article  CAS  PubMed  Google Scholar 

  11. Paszkiewicz G, Gualberto JM, Benamar A, Macherel D, Logan DC (2017) Arabidopsis seed mitochondria are bioenergetically active immediately upon imbibition and specialize via biogenesis in preparation for autotrophic growth. Plant Cell 29:109–128. https://doi.org/10.1105/tpc.16.00700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu YJ, Nunes-Nesi A, Wallström SV, Lager I, Michalecka AM, Norberg FE, Widell S, Fredlund KM, Fernie AR, Rasmusson AG (2009) A redox-mediated modulation of stem bolting in transgenic Nicotiana sylvestris differentially expressing the external mitochondrial NADPH dehydrogenase. Plant Physiol 150:1248–1259. https://doi.org/10.1104/pp.109.136242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Parent JS, Lepage E, Brisson N (2011) Divergent roles for the two PolI-like organelle DNA polymerases of Arabidopsis. Plant Physiol 156:254–262. https://doi.org/10.1104/pp.111.173849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cupp JD, Nielsen BL (2012) Arabidopsis thaliana organellar DNA polymerase IB mutants exhibit reduced mtDNA levels with a decrease in mitochondrial area density. Physiol Plant 149:91–103. https://doi.org/10.1111/ppl.12009

    Article  CAS  PubMed  Google Scholar 

  15. Small I, Suffolk R, Leaver CJ (1989) Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58:69–76. https://doi.org/10.1016/0092-8674(89)90403-0

    Article  CAS  PubMed  Google Scholar 

  16. Davila JI, Arrieta-Montiel MP, Wamboldt Y, Cao J, Hagmann J, Shedge V, Xu YZ, Weigel D, Mackenzie SA (2011) Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis. BMC Biol 9:64. https://doi.org/10.1186/1741-7007-9-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Odahara M, Kuroiwa H, Kuroiwa T, Sekine Y (2009) Suppression of repeat-mediated gross mitochondrial genome rearrangements by RecA in the moss Physcomitrella patens. Plant Cell 21:1182–1194. https://doi.org/10.1105/tpc.108.064709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Evans-Roberts KM, Mitchenall LA, Wall MK, Leroux J, Mylne JS, Maxwell A (2016) DNA gyrase is the target for the quinolone drug ciprofloxacin in Arabidopsis thaliana. J Biol Chem 291:3136–3144. https://doi.org/10.1074/jbc.M115.689554

    Article  CAS  PubMed  Google Scholar 

  19. Springer NM (2010) Isolation of plant DNA for PCR and genotyping using organic extraction and CTAB. Cold Spring Harb Protoc 2010:pdb.prot5515. https://doi.org/10.1101/pdb.prot5515

    Article  PubMed  Google Scholar 

  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  21. Stupar RM, Lilly JW, Town CD, Cheng Z, Kaul S, Buell CR, Jiang J (2001) Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc Natl Acad Sci U S A 98:5099–5103. https://doi.org/10.1073/pnas.091110398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Galbraith DW, Harkins KR, Knapp S (1991) Systemic endopolyploidy in Arabidopsis thaliana. Plant Physiol 96:985–989. https://doi.org/10.1104/pp.96.3.985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the LABEX MitoCross [ANR-11-LABX-0057_MITOCROSS] and benefited from a funding managed by the French National Research Agency as part of the “Investments for the future” program. We thank Rokas Kubilinskas for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Gualberto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schatz-Daas, D., Fertet, A., Lotfi, F., Gualberto, J.M. (2022). Assessment of Mitochondrial DNA Copy Number, Stability, and Repair in Arabidopsis . In: Van Aken, O., Rasmusson, A.G. (eds) Plant Mitochondria. Methods in Molecular Biology, vol 2363. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1653-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1653-6_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1652-9

  • Online ISBN: 978-1-0716-1653-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics