Skip to main content

Consideration of the Unbound Drug Concentration in Enzyme Kinetics

  • Protocol
  • First Online:
Enzyme Kinetics in Drug Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2342))

Abstract

The study of enzyme kinetics in drug metabolism involves assessment of rates of metabolism and inhibitory potencies over a suitable concentration range. In all but the very simplest in vitro system, these drug concentrations can be influenced by a variety of nonspecific binding reservoirs that can reduce the available concentration to the enzyme system(s) under investigation. As a consequence, the apparent kinetic parameters, such as Km or Ki, that are derived can deviate from the true values. There are a number of sources of these nonspecific binding depots or barriers, including membrane permeation and partitioning, plasma or serum protein binding, and incubational binding. In the latter case, this includes binding to the assay apparatus as well as biological depots, depending on the characteristics of the in vitro matrix being used. Given the wide array of subcellular, cellular, and recombinant enzyme systems utilized in drug metabolism, each of these has different components which can influence the free drug concentration. The physicochemical properties of the test compound are also paramount in determining the influential factors in any deviation between true and apparent kinetic behavior. This chapter describes the underlying mechanisms determining the free drug concentration in vitro and how these factors can be accounted for in drug metabolism studies, illustrated with case studies from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Margolis JM, Obach RS (2003) Impact of nonspecific binding to microsomes and phospholipid on the inhibition of cytochrome P4502D6: Implications for relating in vitro inhibition data to in vivo drug interactions. Drug Metab Dispos 31(5):606–611. https://doi.org/10.1124/dmd.31.5.606

    Article  CAS  PubMed  Google Scholar 

  2. Liu J et al (2006) Constructing plasma protein binding model based on a combination of cluster analysis and 4D-fingerprint molecular similarity analyses. Bioorg Med Chem 14(3):611–621

    Article  CAS  PubMed  Google Scholar 

  3. Fournier T et al (2000) Alpha-1-acid glycoprotein. Biochim Biophys Acta 1482(1-2):157–171

    Article  CAS  PubMed  Google Scholar 

  4. Kratochwil NA et al (2004) Predicting plasma protein binding of drugs - revisited. Curr Opin Drug Discov Devel 7(4):507–512

    CAS  PubMed  Google Scholar 

  5. Clarke HJ et al (2008) Cross-species differential plasma protein binding of MBX-102/JNJ39659100: a novel PPAR-gamma agonist. PPAR Res 2008:465715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Lin JH et al (1994) Nonlinear kinetics of alendronate: plasma protein binding and bone uptake. Drug Metab Dispos 22(3):400–405

    CAS  PubMed  Google Scholar 

  7. Peletier LA et al (2009) Impact of plasma-protein binding on receptor occupancy: An analytical description. J Theor Biol 256(2):253–262

    Article  CAS  PubMed  Google Scholar 

  8. Boxenbaum H (2007) In: Gabrielsson J, Weiner D (eds) Pharmacokinetic, pharmacokinetic and pharmacodynamic data analysis: concepts and applications, vol 32, 4th edn. Swedish Pharmaceutical Press, Stockholm

    Google Scholar 

  9. Berezhkovskiy LM (2006) On the calculation of the concentration dependence of drug binding to plasma proteins with multiple binding sites of different affinities: determination of the possible variation of the unbound drug fraction and calculation of the number of binding sites of the protein. J Pharm Sci 96(2):249–257

    Article  CAS  Google Scholar 

  10. Musteata FM (2012) Calculation of normalized drug concentrations in the presence of altered plasma protein binding. Clin Pharmacokinet 51(1):55–68

    Article  CAS  PubMed  Google Scholar 

  11. Smith DA et al (2010) The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov 9(12):929–939

    Article  CAS  PubMed  Google Scholar 

  12. Benet LZ, Hoener B-A (2002) Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther 71(3):115–121

    Article  CAS  PubMed  Google Scholar 

  13. Smith SA, Waters NJ (2018) Pharmacokinetic and pharmacodynamic considerations for drugs binding to alpha-1-acid glycoprotein. Pharm Res 36(2):30. https://doi.org/10.1007/s11095-018-2551-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wong BK et al (1999) Dose-dependent plasma clearance of MK-826, a carbapenem antibiotic, arising from concentration-dependent plasma protein binding in rats and monkeys. J Pharm Sci 88(2):277–280

    Article  CAS  PubMed  Google Scholar 

  15. Wu J et al (2012) Implications of plasma protein binding for pharmacokinetics and pharmacodynamics of the gamma-secretase inhibitor RO4929097. Clin Cancer Res 18(7):2066–2079

    Article  CAS  PubMed  Google Scholar 

  16. Skaggs SM et al (2006) A streamlined method to predict hepatic clearance using human liver microsomes in the presence of human plasma. J Pharm Toxicol Methods 53(3):284–290. https://doi.org/10.1016/j.vascn.2005.10.002

    Article  CAS  Google Scholar 

  17. Shibata Y et al (2002) Prediction of hepatic clearance and availability by cryopreserved human hepatocytes: an application of serum incubation method. Drug Metab Dispos 30(8):892–896. https://doi.org/10.1124/dmd.30.8.892

    Article  CAS  PubMed  Google Scholar 

  18. Chao P et al (2009) Prediction of human hepatic clearance using an in vitro plated hepatocyte clearance model. Drug Metab Lett 3(4):296–307. https://doi.org/10.2174/187231209790218073

    Article  CAS  PubMed  Google Scholar 

  19. Riley RJ et al (2005) A unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocytes and microsomes. Drug Metab Dispos 33(9):1304–1311. https://doi.org/10.1124/dmd.105.004259

    Article  CAS  PubMed  Google Scholar 

  20. Rowland A et al (2008) The “albumin effect” and drug glucuronidation: bovine serum albumin and fatty acid-free human serum albumin enhance the glucuronidation of UDP-glucuronosyltransferase (UGT) 1A9 substrates but not UGT1A1 and UGT1A6 activities. Drug Metab Dispos 36(6):1056–1062. https://doi.org/10.1124/dmd.108.021105

    Article  CAS  PubMed  Google Scholar 

  21. Kilford PJ et al (2009) Prediction of drug clearance by glucuronidation from in vitro data: use of combined cytochrome P450 and UDP-glucuronosyltransferase cofactors in alamethicin-activated human liver microsomes. Drug Metab Dispos 37(1):82–89. https://doi.org/10.1124/dmd.108.023853

    Article  CAS  PubMed  Google Scholar 

  22. Rowland A et al (2007) Binding of inhibitory fatty acids is responsible for the enhancement of UDP-glucuronosyltransferase 2B7 activity by albumin: implications for in vitro-in vivo extrapolation. J Pharm Exp Ther 321(1):137–147. https://doi.org/10.1124/jpet.106.118216

    Article  CAS  Google Scholar 

  23. Rowland A et al (2008) The “albumin effect” and in vitro-in vivo extrapolation: sequestration of long-chain unsaturated fatty acids enhances phenytoin hydroxylation by human liver microsomal and recombinant cytochrome P450 2C9. Drug Metab Dispos 36(5):870–877. https://doi.org/10.1124/dmd.107.019885

    Article  CAS  PubMed  Google Scholar 

  24. Xu L et al (2009) Prediction of human drug-drug interactions from time-dependent inactivation of CYP3A4 in primary hepatocytes using a population-based simulator. Drug Metab Dispos 37(12):2330–2339. https://doi.org/10.1124/dmd.108.025494

    Article  CAS  PubMed  Google Scholar 

  25. Grimm SW et al (2009) The conduct of in vitro studies to address time-dependent inhibition of drug-metabolizing enzymes: a perspective of the Pharmaceutical Research and Manufacturers of America. Drug Metab Dispos 37(7):1355–1370. https://doi.org/10.1124/dmd.109.026716

    Article  CAS  PubMed  Google Scholar 

  26. Obach RS et al (2007) Mechanism-based inactivation of human cytochrome P450 enzymes and the prediction of drug-drug interactions. Drug Metab Dispos 35(2):246–255. https://doi.org/10.1124/dmd.106.012633

    Article  CAS  PubMed  Google Scholar 

  27. Chen Y et al (2011) Determination of time-dependent inactivation of CYP3A4 in cryopreserved human hepatocytes and assessment of human drug-drug interactions. Drug Metab Dispos 39(11):2085–2092. https://doi.org/10.1124/dmd.111.040634

    Article  CAS  PubMed  Google Scholar 

  28. Mao J et al (2011) Prediction of CYP3A-mediated drug-drug interactions using human hepatocytes suspended in human plasma. Drug Metab Dispos 39(4):591–602. https://doi.org/10.1124/dmd.110.036400

    Article  CAS  PubMed  Google Scholar 

  29. Lu C et al (2008) Prediction of pharmacokinetic drug-drug interactions using human hepatocyte suspension in plasma and cytochrome P450 phenotypic data. III. In vitro-in vivo correlation with fluconazole. Drug Metab Dispos 36(7):1261–1266. https://doi.org/10.1124/dmd.107.019000

    Article  CAS  PubMed  Google Scholar 

  30. Kerns EH, Di L (2016) Drug-like properties: concepts, structure design and methods: from ADME to toxicity optimization. Elsevier, London

    Google Scholar 

  31. Kwon Y (2001) Handbook of essential pharmacokinetics, pharmacodynamics and drug metabolism for industrial scientists. Kluwer Academic/Plenum, New York

    Google Scholar 

  32. Banker MJ, Clark TH (2008) Plasma/serum protein binding determinations. Curr Drug Metab 9(9):854–859

    Article  CAS  PubMed  Google Scholar 

  33. Howard ML et al (2010) Plasma protein binding in drug discovery and development. Comb Chem High Throughput Screen 13(2):170–187

    Article  CAS  PubMed  Google Scholar 

  34. Zhang F et al (2012) Compilation of 222 drugs’ plasma protein binding data and guidance for study designs. Drug Discov Today 17(9-10):475–485

    Article  CAS  PubMed  Google Scholar 

  35. Isbell J, Yuan D, Torrao L, Gatlik E, Hoffmann L, Wipfli P (2019) Plasma protein binding of highly bound drugs determined with equilibrium gel filtration of nonradiolabeled compounds and LC-MS/MS detection. J Pharm Sci 108:1053–1060

    Article  CAS  PubMed  Google Scholar 

  36. Di L et al (2012) Impact of recovery on fraction unbound using equilibrium dialysis. J Pharm Sci 101(3):1327–1335

    Article  CAS  PubMed  Google Scholar 

  37. Tozer TN et al (1983) Volume shifts and protein binding estimates using equilibrium dialysis: Application to prednisolone binding in humans. J Pharm Sci 72(12):1442–1446

    Article  CAS  PubMed  Google Scholar 

  38. http://htdialysis.com/. Accessed 1 Oct 2012

  39. http://www.piercenet.com/browse.cfm?fldID=8C6CA217-75C3-4019-AE9C-D48FF4C00EC6. Accessed 1 Oct 2012

  40. Maurer TS et al (2005) Relationship between exposure and nonspecific binding of thirty-three central nervous system drugs in mice. Drug Metab Dispos 33(1):175–181

    Article  CAS  PubMed  Google Scholar 

  41. Plum A et al (1999) Determination of in vitro plasma protein binding of insulin aspart and insulin detemir by equilibrium dialysis. Diabetologia 42(Suppl 1):A236

    Google Scholar 

  42. Riccardi K, Cawley S, Yates PD, Chang C, Funk C, Niosi M, Lin J, Di L (2015) Plasma protein binding of challenging compounds. J Pharm Sci 104:2627–2636

    Article  CAS  PubMed  Google Scholar 

  43. Di L, Breen C, Chambers R, Eckley ST, Fricke R, Ghosh A, Harradine P, Kalvass JC, Ho S, Lee CA, Marathe P, Perkins EJ, Qian M, Tse S, Yan Z, Zamek-Gliszczynski MJ (2017) Industry perspective on contemporary protein-binding methodologies: considerations for regulatory drug-drug interaction and related guidelines on highly bound drugs. J Pharm Sci 106:3442–3452

    Article  CAS  PubMed  Google Scholar 

  44. Fung EN et al (2010) Effective screening approach to select esterase inhibitors used for stabilizing ester-containing prodrugs analyzed by LC-MS/MS. Bioanalysis 2(4):733–743

    Article  CAS  PubMed  Google Scholar 

  45. Eng H et al (2010) Utility of the carboxylesterase inhibitor bis-para-nitrophenylphosphate (BNPP) in the plasma unbound fraction determination for a hydrolytically unstable amide derivative and agonist of the TGR5 receptor. Xenobiotica 40(6):369–380

    Article  CAS  PubMed  Google Scholar 

  46. Ryu S, Novak JJ, Patel R, Yates P, Di L (2018) The impact of low temperature on fraction unbound for plasma and tissue. Biopharm Drug Dispos 39:437–442

    Article  CAS  PubMed  Google Scholar 

  47. Collins JM, Klecker RW Jr (2002) Evaluation of highly bound drugs: interspecies, intersubject, and related comparisons. J Clin Pharmacol 42(9):971–975

    Article  CAS  PubMed  Google Scholar 

  48. Ryu S, Riccardi K, Patel R, Zueva L, Burchett W, Di L (2019) Applying two orthogonal methods to assess accuracy of plasma protein binding measurements for highly bound compounds. J Pharm Sci 108:3745–3749

    Article  CAS  PubMed  Google Scholar 

  49. Brockman AH, Oller HR, Moreau B, Kriksciukaite K, Bilodeau MT (2015) Simple method provides resolution of albumin, lipoprotein, free fraction, and chylomicron to enhance the utility of protein binding assays. J Med Chem 58:1420–1425

    Article  CAS  PubMed  Google Scholar 

  50. Kalvass JC, Phipps C, Jenkins GJ, Stuart P, Zhang X, Heinle L, Nijsen MJMA, Fischer V (2018) Mathematical and experimental validation of flux dialysis method: an improved approach to measure unbound fraction for compounds with high protein binding and other challenging properties. Drug Metab Dispos 46:458–469

    Article  CAS  PubMed  Google Scholar 

  51. http://www.admecell.com/transil-pp/. Accessed 1 Oct 2012

  52. Yamazaki M et al (1996) Recent advances in carrier-mediated hepatic uptake and biliary excretion of xenobiotics. Pharm Res 13(4):497–513

    Article  CAS  PubMed  Google Scholar 

  53. Shitara Y et al (2006) Transporters as a determinant of drug clearance and tissue distribution. Eur J Pharm Sci 27(5):425–446. https://doi.org/10.1016/j.ejps.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  54. Watanabe T et al (2010) Application of physiologically based pharmacokinetic modeling and clearance concept to drugs showing transporter-mediated distribution and clearance in humans. J Pharmacokinet Pharmacodyn 37(6):575–590. https://doi.org/10.1007/s10928-010-9176-y

    Article  CAS  PubMed  Google Scholar 

  55. Di L et al (2012) Mechanistic insights from comparing intrinsic clearance values between human liver microsomes and hepatocytes to guide drug design. Eur J Med Chem 57:441–448

    Article  CAS  PubMed  Google Scholar 

  56. Lu C et al (2006) Comparison of intrinsic clearance in liver microsomes and hepatocytes from rats and humans: evaluation of free fraction and uptake in hepatocytes. Drug Metab Dispos 34(9):1600–1605. https://doi.org/10.1124/dmd.106.010793

    Article  CAS  PubMed  Google Scholar 

  57. Brown HS et al (2010) Comparative use of isolated hepatocytes and hepatic microsomes for cytochrome P450 inhibition studies: transporter-enzyme interplay. Drug Metab Dispos 38(12):2139–2146. https://doi.org/10.1124/dmd.110.035824

    Article  CAS  PubMed  Google Scholar 

  58. Grime K et al (2008) Functional consequences of active hepatic uptake on cytochrome P450 inhibition in rat and human hepatocytes. Drug Metab Dispos 36(8):1670–1678. https://doi.org/10.1124/dmd.108.021055

    Article  CAS  PubMed  Google Scholar 

  59. Nagar S, Korzekwa K (2012) Commentary: nonspecific protein binding versus membrane partitioning: it is not just semantics. Drug Metab Dispos 40(9):1649–1652. https://doi.org/10.1124/dmd.112.046599

    Article  CAS  PubMed  Google Scholar 

  60. Ernster L et al (1962) Enzyme-structure relations in the endoplasmic reticulum of rat liver. A morphological and biochemical study. J Cell Biol 15(3):541–562. https://doi.org/10.1083/jcb.15.3.541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kilford PJ et al (2008) Hepatocellular binding of drugs: correction for unbound fraction in hepatocyte incubations using microsomal binding or drug lipophilicity data. Drug Metab Dispos 36(7):1194–1197. https://doi.org/10.1124/dmd.108.020834

    Article  CAS  PubMed  Google Scholar 

  62. Zhang Y et al (2010) Lack of appreciable species differences in nonspecific microsomal binding. J Pharm Sci 99(8):3620–3627. https://doi.org/10.1002/jps.22124

    Article  CAS  PubMed  Google Scholar 

  63. Pelkonen O, Turpeinen M (2007) In vitro-in vivo extrapolation of hepatic clearance: Biological tools, scaling factors, model assumptions and correct concentrations. Xenobiotica 37(10/11):1066–1089. https://doi.org/10.1080/00498250701620726

    Article  CAS  PubMed  Google Scholar 

  64. Abraham MH, Austin RP (2012) The effect of ionized species on microsomal binding. Eur J Med Chem 47:202–205. https://doi.org/10.1016/j.ejmech.2011.10.043

    Article  CAS  PubMed  Google Scholar 

  65. Chen J et al (2012) Accumulation of an antidepressant in vesiculogenic membranes of yeast cells triggers autophagy. PLoS One 7(4):e34024. https://doi.org/10.1371/journal.pone.0034024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pickholz M et al (2007) Interactions of chlorpromazine with phospholipid monolayers: Effects of the ionization state of the drug. Biophys Chem 125(2-3):425–434. https://doi.org/10.1016/j.bpc.2006.10.010

    Article  CAS  PubMed  Google Scholar 

  67. Austin RP et al (2005) The thermodynamics of the partitioning of ionizing molecules between aqueous buffers and phospholipid membranes. Pharm Res 22(10):1649–1657. https://doi.org/10.1007/s11095-005-6336-7

    Article  CAS  PubMed  Google Scholar 

  68. Small H et al (2011) Measurement of binding of basic drugs to acidic phospholipids using surface plasmon resonance and incorporation of the data into mechanistic tissue composition equations to predict steady-state volume of distribution. Drug Metab Dispos 39(10):1789–1793. https://doi.org/10.1124/dmd.111.040253

    Article  CAS  PubMed  Google Scholar 

  69. Korzekwa KR et al (2012) Models to predict unbound intracellular drug concentrations in the presence of transporters. Drug Metab Dispos 40(5):865–876. https://doi.org/10.1124/dmd.111.044289

    Article  CAS  PubMed  Google Scholar 

  70. Goldstein DB (1984) The effects of drugs on membrane fluidity. Annu Rev Pharmacol Toxicol 24:43–64. https://doi.org/10.1146/annurev.pa.24.040184.000355

    Article  CAS  PubMed  Google Scholar 

  71. Zheng N et al (2011) Effect of phospholipidosis on the cellular pharmacokinetics of chloroquine. J Pharmacol Exp Ther 336(3):661–671. https://doi.org/10.1124/jpet.110.175679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zheng N et al (2011) The subcellular distribution of small molecules: a meta-analysis. Mol Pharm 8(5):1611–1618. https://doi.org/10.1021/mp200093z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Daniel WA (2003) Mechanisms of cellular distribution of psychotropic drugs. Significance for drug action and interactions. Prog Neuropsychopharmacol Biol Psychiatry 27(1):65–73. https://doi.org/10.1016/s0278-5846(02)00317-2

    Article  CAS  PubMed  Google Scholar 

  74. Kaufmann AM, Krise JP (2007) Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci 96(4):729–746. https://doi.org/10.1002/jps.20792

    Article  CAS  PubMed  Google Scholar 

  75. Carlier MB et al (1994) Accumulation, release and subcellular localization of azithromycin in phagocytic and non-phagocytic cells in culture. Int J Tissue React 16(5/6):211–220

    CAS  PubMed  Google Scholar 

  76. Gong Y et al (2007) Lysosomes contribute to anomalous pharmacokinetic behavior of melanocortin-4 receptor agonists. Pharm Res 24(6):1138–1144. https://doi.org/10.1007/s11095-007-9239-y

    Article  CAS  PubMed  Google Scholar 

  77. Nadanaciva S et al (2011) A high content screening assay for identifying lysosomotropic compounds. Toxicol In Vitro 25(3):715–723. https://doi.org/10.1016/j.tiv.2010.12.010

    Article  CAS  PubMed  Google Scholar 

  78. Funk RS, Krise JP (2012) Cationic amphiphilic drugs cause a marked expansion of apparent lysosomal volume: implications for an intracellular distribution-based drug interaction. Mol Pharm 9(5):1384–1395. https://doi.org/10.1021/mp200641e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Heikkinen AT et al (2009) Kinetics of cellular retention during Caco-2 permeation experiments: role of lysosomal sequestration and impact on permeability estimates. J Pharmacol Exp Ther 328(3):882–892. https://doi.org/10.1124/jpet.108.145797

    Article  CAS  PubMed  Google Scholar 

  80. Hung DY et al (2004) Disposition kinetics of propranolol isomers in the perfused rat liver. J Pharmacol Exp Ther 311(2):822–829. https://doi.org/10.1124/jpet.104.070011

    Article  CAS  PubMed  Google Scholar 

  81. Llanos S, Megias D, Blanco-Aparicio C et al (2019) Lysosomal trapping of palbociclib and its functional implications. Oncogene 38(20):3886–3902. https://doi.org/10.1038/s41388-019-0695-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Duvvuri M, Krise JP (2005) Intracellular drug sequestration events associated with the emergence of multidrug resistance: a mechanistic review. Front Biosci 10(2):1499–1509. https://doi.org/10.2741/1634

    Article  CAS  PubMed  Google Scholar 

  83. Tunek A et al (1997) Reversible formation of fatty acid esters of budesonide, an antiasthma glucocorticoid, in human lung and liver microsomes. Drug Metab Dispos 25(11):1311–1317

    CAS  PubMed  Google Scholar 

  84. Miller-Larsson A et al (1998) Reversible fatty acid conjugation of budesonide. Novel mechanism for prolonged retention of topically applied steroid in airway tissue. Drug Metab Dispos 26(7):623–630

    CAS  PubMed  Google Scholar 

  85. van den Brink KIM et al (2008) Evidence of the in vivo esterification of budesonide in human airways. Br J Clin Pharmacol 66(1):27–35. https://doi.org/10.1111/j.1365-2125.2008.03164.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Narazaki R et al (1997) Kinetic Analysis of the Covalent Binding of Captopril to Human Serum Albumin. Journal of Pharmaceutical Sciences 86(2):215–219. https://doi.org/10.1021/js960234+

    Article  CAS  PubMed  Google Scholar 

  87. Gao H et al (2010) Assessment of in silico models for fraction of unbound drug in human liver microsomes. Expert Opin Drug Metab Toxicol 6(5):533–542. https://doi.org/10.1517/17425251003671022

    Article  CAS  PubMed  Google Scholar 

  88. Austin RP et al (2002) The influence of nonspecific microsomal binding on apparent intrinsic clearance, and its prediction from physicochemical properties. Drug Metab Dispos 30(12):1497–1503. https://doi.org/10.1124/dmd.30.12.1497

    Article  CAS  PubMed  Google Scholar 

  89. Austin RP et al (2005) The binding of drugs to hepatocytes and its relationship to physicochemical properties. Drug Metabolism and Disposition 33(3):419–425. https://doi.org/10.1124/dmd.104.002436

    Article  CAS  PubMed  Google Scholar 

  90. Hallifax D, Houston JB (2006) Binding of drugs to hepatic microsomes: comment and assessment of current prediction methodology with recommendation for improvement. Drug Metab Dispos 34(4):724–726. https://doi.org/10.1124/dmd.105.007658

    Article  CAS  PubMed  Google Scholar 

  91. Gertz M et al (2008) Drug lipophilicity and microsomal protein concentration as determinants in the prediction of the fraction unbound in microsomal incubations. Drug Metab Dispos 36(3):535–542. https://doi.org/10.1124/dmd.107.018713

    Article  CAS  PubMed  Google Scholar 

  92. Gao H et al (2008) In silico modeling of nonspecific binding to human liver microsomes. Drug Metab Dispos 36(10):2130–2135. https://doi.org/10.1124/dmd.107.020131

    Article  CAS  PubMed  Google Scholar 

  93. Zhang Y, Yao L, Lin J, Gao H, Wilson TC, Giragossian C (2010) Lack of appreciable species differences in nonspecific microsomal binding. J Pharm Sci 99:3620–3627

    Article  CAS  PubMed  Google Scholar 

  94. Chen S, Prieto Garcia L, Bergström F, Nordell P, Grime K (2017) Intrinsic clearance assay incubational binding: a method comparison. Drug Metab Dispos 45(4):342–345. https://doi.org/10.1124/dmd.116.074138

    Article  CAS  PubMed  Google Scholar 

  95. Riccardi K, Ryu S, Lin J, Yates P, Tess D, Li R, Singh D, Holder BR, Kapinos B, Chang G, Di L (2018) Comparison of species and cell-type differences in fraction unbound of liver tissues, hepatocytes, and cell lines. Drug Metab Dispos 46(415-421):S1–S4

    Google Scholar 

  96. Riede J, Camenisch G, Huwyler J, Poller B (2017) Current in vitro methods to determine hepatic Kpuu: a comparison of their usefulness and limitations. J Pharm Sci 106(9):2805–2814. https://doi.org/10.1016/j.xphs.2017.03.025

    Article  CAS  PubMed  Google Scholar 

  97. Iwasaki S, Kosugi Y, Zhu AZX et al (2019) Application of unbound liver-to-plasma concentration ratio to quantitative projection of cytochrome P450-mediated drug-drug interactions using physiologically based pharmacokinetic modelling approach. Xenobiotica 49(11):1251–1259. https://doi.org/10.1080/00498254.2018.1547461

    Article  CAS  PubMed  Google Scholar 

  98. Yoshikado T, Toshimoto K, Nakada T et al (2017) Comparison of methods for estimating unbound intracellular-to-medium concentration ratios in rat and human hepatocytes using statins. Drug Metab Dispos 45(7):779–789. https://doi.org/10.1124/dmd.116.074823

    Article  CAS  PubMed  Google Scholar 

  99. Yabe Y, Galetin A, Houston JB (2011) Kinetic characterization of rat hepatic uptake of 16 actively transported drugs. Drug Metab Dispos 39(10):1808–1814. https://doi.org/10.1124/dmd.111.040477

    Article  CAS  PubMed  Google Scholar 

  100. Ryu S, Riccardi K, Patel R, Zueva L, Burchett W, Di L (2019) Applying two orthogonal methods to assess accuracy of plasma protein binding measurements for highly bound compounds. J Pharm Sci 108:3745–3749

    Article  CAS  PubMed  Google Scholar 

  101. Riccardi K, Lin J, Li Z, Niosi M, Ryu S, Hua W, Atkinson K, Kosa RE, Litchfield J, Di L (2017) Novel method to predict in vivo liver-to-plasma Kpuu for OATP substrates using suspension hepatocytes. Drug Metab Dispos 45:576–580

    Article  CAS  PubMed  Google Scholar 

  102. Riccardi K, Li Z, Brown JA, Gorgoglione MF, Niosi M, Gosset J, Huard K, Erion DM, Di L (2016) Determination of unbound partition coefficient and in vitro-in vivo extrapolation for SLC13A transporter-mediated uptake. Drug Metab Dispos 44:1633–1642

    Article  CAS  PubMed  Google Scholar 

  103. Li Z, Di L, Maurer TS (2019) Theoretical considerations for direct translation of unbound liver-to-plasma partition coefficient from in vitro to in vivo. AAPS J 21(3):43. https://doi.org/10.1208/s12248-019-0314-1

    Article  PubMed  Google Scholar 

  104. Riccardi KA, Tess DA, Lin J, Patel R, Ryu S, Atkinson K, Di L, Li R (2019) A novel unified approach to predict human hepatic clearance for both enzyme- and transporter-mediated mechanisms using suspended human hepatocytes. Drug Metab Dispos 47:484–492

    Article  CAS  PubMed  Google Scholar 

  105. Tachibana T, Kitamura S, Kato M, Mitsui T, Shirasaka Y, Yamashita S, Sugiyama Y (2010) Model analysis of the concentration-dependent permeability of P-gp substrates. Pharm Res 27:442–446

    Article  CAS  PubMed  Google Scholar 

  106. Chien HC, Zur AA, Maurer TS et al (2016) Rapid method to determine intracellular drug concentrations in cellular uptake assays: Application to metformin in organic cation transporter 1-transfected human embryonic kidney 293 cells. Drug Metab Dispos 44(3):356–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ghosh A, Scott DO, Maurer TS (2014) Towards a unified model of passive drug permeation I: origins of the unstirred water layer with applications to ionic permeation. Eur J Pharm Sci 52:109–124. https://doi.org/10.1016/j.ejps.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  108. Scott DO, Ghosh A, Di L, Maurer TS (2017) Passive drug permeation through membranes and cellular distribution. Pharmacol Res 117:94–102. https://doi.org/10.1016/j.phrs.2016.11.028

    Article  CAS  PubMed  Google Scholar 

  109. Ghosh A, Maurer TS, Litchfield J et al (2014) Toward a unified model of passive drug permeation II: the physiochemical determinants of unbound tissue distribution with applications to the design of hepatoselective glucokinase activators. Drug Metab Dispos 42(10):1599–1610

    Article  PubMed  CAS  Google Scholar 

  110. Obach RS (2000) Metabolism of ezlopitant, a nonpeptidic substance P receptor antagonist, in liver microsomes: enzyme kinetics, cytochrome P450 isoform identity, and in vitro-in vivo correlation. Drug Metab Dispos 28(9):1069–1076

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Waters, N.J., Obach, R.S., Di, L. (2021). Consideration of the Unbound Drug Concentration in Enzyme Kinetics. In: Nagar, S., Argikar, U.A., Tweedie, D. (eds) Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, vol 2342. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1554-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1554-6_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1553-9

  • Online ISBN: 978-1-0716-1554-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics