Skip to main content

Amplified Luminescent Proximity Homogeneous Assay (Alpha)-Based Technique to Detect GPCR Oligomers in Human Postmortem Brain

  • Protocol
  • First Online:
Receptor and Ion Channel Detection in the Brain

Part of the book series: Neuromethods ((NM,volume 169))

  • 625 Accesses

Abstract

Protein–protein interactions (PPI) play an important role in cellular functions and biological processes within the organism. G-protein-coupled receptors (GPCRs) form the largest group of the receptors involved in cell signaling across the plasma membrane, thus being the main pharmacotherapeutic target. Importantly, GPCRs can interact between them, a phenomenon known as GPCR oligomerization. In recent years, the characterization of direct PPI between GPCRs has gained interest, since these entities (i.e., GPCR oligomers) may evolve into important pharmacological targets in pathological conditions. Accordingly, novel techniques are needed, especially when aiming at revealing GPCR oligomerization in human tissue (i.e., postmortem brain), to monitor oligomer formation dynamics in disease. Here, we present a novel methodology to ascertain PPI between two GPCRs, which is the Amplified Luminescent Proximity Homogeneous Assay (Alpha) technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang M, Zhu D, Zhu J et al (2018) Local and global anatomy of antibody-protein antigen recognition. J Mol Recognit. https://doi.org/10.1002/jmr.2693

  2. Sokolina K, Kittanakom S, Snider J et al (2017) Systematic protein–protein interaction mapping for clinically relevant human GPCRs. Mol Syst Biol 13:918

    Article  Google Scholar 

  3. Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22:368–376

    Article  CAS  Google Scholar 

  4. Hauser AS, Attwood MM, Rask-Andersen M et al (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16:829–842. https://doi.org/10.1038/nrd.2017.178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sriram K, Insel PA (2018) G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? In: Molecular Pharmacology. American Society for Pharmacology and Experimental Therapy, pp 251–258

    Google Scholar 

  6. Nooren IMA, Thornton JM (2003) Diversity of protein-protein Interactionsitle. EMBO J 22:3486–3492. https://doi.org/10.1093/emboj/cdg359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ciruela F, Burgueno J, Casado V et al (2004) Combining mass spectrometry and pull-down techniques for the study of receptor heteromerization. Direct epitope-epitope electrostatic interactions between adenosine A2A and dopamine D2 receptors. Anal Chem 76:5354–5363. https://doi.org/10.1021/ac049295f

    Article  CAS  PubMed  Google Scholar 

  8. Fernandez-Duenas V, Gomez-Soler M, Jacobson KA et al (2012) Molecular determinants of a(2A) R-D(2) R allosterism: role of the intracellular loop 3 of the D(2) R. J Neurochem 123:373–384. https://doi.org/10.1111/j.1471-4159.2012.07956.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fernández-Dueñas V, Gomez-Soler M, Morato X et al (2013) Dopamine D2 receptor-mediated modulation of adenosine A2A receptor agonist binding within the A2AR/D2R oligomer framework. Neurochem Int 63:42–46. https://doi.org/10.1016/j.neuint.2013.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Azdad K, Gall D, Woods AS et al (2009) Dopamine D2 and adenosine A2A receptors regulate NMDA-mediated excitation in Accumbens neurons through A2A–D2 receptor Heteromerization. Neuropsychopharmacology 34:972–986. https://doi.org/10.1038/npp.2008.144

    Article  CAS  PubMed  Google Scholar 

  11. Ferré S, Bonaventura J, Zhu W et al (2018) Essential control of the function of the Striatopallidal neuron by pre-coupled complexes of adenosine A2A-dopamine D2 receptor Heterotetramers and adenylyl cyclase. Front Pharmacol 9:243. https://doi.org/10.3389/fphar.2018.00243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bouvier M (2001) Oligomerization of G-protein-coupled transmitter receptors. Nature Rev Neurosci 2:274–286. https://doi.org/10.1038/35067575

    Article  CAS  Google Scholar 

  13. Ciruela F, Vilardaga J-P, Fernández-Dueñas V (2010) Lighting up multiprotein complexes: lessons from GPCR oligomerization. Trends Biotechnol 28:407–415

    Article  CAS  Google Scholar 

  14. Cabello N, Gandía J, Bertarelli DCG et al (2009) Metabotropic glutamate type 5, dopamine D<inf>2</inf>and adenosine a<inf>2a</inf>receptors form higher-order oligomers in living cells. J Neurochem. https://doi.org/10.1111/j.1471-4159.2009.06078.x

  15. Trifilieff P, Rives M-L, Urizar E et al (2011) Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum. BioTechniques 51:111–118. https://doi.org/10.2144/000113719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bonaventura J, Rico AJ, Moreno E et al (2014) L-DOPA-treatment in primates disrupts the expression of a(2A) adenosine-CB(1) cannabinoid-D(2) dopamine receptor heteromers in the caudate nucleus. Neuropharmacology 79:90–100. https://doi.org/10.1016/j.neuropharm.2013.10.036

    Article  CAS  PubMed  Google Scholar 

  17. Fernández-Dueñas V, Taura JJ, Cottet M et al (2015) Untangling dopamine-adenosine receptor-receptor assembly in experimental parkinsonism in rats. Dis Model Mech 8:57–63. https://doi.org/10.1242/dmm.018143

    Article  CAS  PubMed  Google Scholar 

  18. Zhu Y, Mészáros J, Walle R et al (2020) Detecting G protein-coupled receptor complexes in postmortem human brain with proximity ligation assay and a Bayesian classifier. BioTechniques 68:122–129. https://doi.org/10.2144/btn-2019-0083

    Article  CAS  PubMed  Google Scholar 

  19. Fernández-Dueñas V, Gómez-Soler M, Valle-León M et al (2019) Revealing adenosine A2A-dopamine D2 receptor Heteromers in Parkinson’s disease post-mortem brain through a new AlphaScreen-based assay. Int J Mol Sci 20:3600. https://doi.org/10.3390/ijms20143600

    Article  CAS  PubMed Central  Google Scholar 

  20. Eglen RM, Reisine T, Roby P et al (2008) The use of AlphaScreen technology in HTS: current status. Current Chemical Genomics 1:2–10. https://doi.org/10.2174/1875397300801010002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yasgar A, Jadhav A, Simeonov A, Coussens NP (2016) AlphaScreen-based assays: ultra-high-throughput screening for small-molecule inhibitors of challenging enzymes and protein-protein interactions. Methods Mol Biol 1439:77–98. https://doi.org/10.1007/978-1-4939-3673-1_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taouji S, Dahan S, Bosse R, Chevet E (2009) Current screens based on the AlphaScreen Technology for Deciphering Cell Signalling Pathways. Curr Genomics 10:93–101. https://doi.org/10.2174/138920209787847041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taura J, Valle-León M, Sahlholm K et al (2018) Behavioral control by striatal adenosine A2A-dopamine D2 receptor heteromers. Genes Brain Behav 17:e12432. https://doi.org/10.1111/gbb.12432

    Article  CAS  PubMed  Google Scholar 

  24. Clark JD, Gebhart GF, Gonder JC et al (1997) Special report: the 1996 guide for the care and use of laboratory animals. ILAR J 38:41–48

    Article  Google Scholar 

  25. (2020) Servier Medical Art. https://smart.servier.com/image-set-download/. Accessed 16 Jul 2020

Download references

Acknowledgments

This work was supported by Ministerio de Ciencia, Innovación y Universidades–Agencia Estatal de Investigación-FEDER-UE (SAF2017-87349-R MICIU/AEI/FEDER/UE), and the Catalan government (2017 SGR 1604). We thank Centres de Recerca de Catalunya (CERCA) Programme/Generalitat de Catalunya for IDIBELL institutional support. We thank E. Castaño and B. Torrejón from the Scientific and Technical Services (SCT) group at the Bellvitge Campus of the University of Barcelona for their technical assistance.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Valle-León, M., Fernández-Dueñas, V., Ciruela, F. (2021). Amplified Luminescent Proximity Homogeneous Assay (Alpha)-Based Technique to Detect GPCR Oligomers in Human Postmortem Brain. In: Lujan, R., Ciruela, F. (eds) Receptor and Ion Channel Detection in the Brain. Neuromethods, vol 169. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1522-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1522-5_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1521-8

  • Online ISBN: 978-1-0716-1522-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics