Skip to main content

Methods to Study Posttranslational Modification Patterns in Cytotoxic T-Cells and Cancer

  • Protocol
  • First Online:
Cytotoxic T-Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2325))

Abstract

Protein posttranslational modifications (PTMs) regulate intracellular signaling associated with development and progression of many diseases; thus, they are key to understanding pathological mechanisms and set up more tailored therapies. In addition, many posttranslationally modified proteins are released into biological fluids and can be used as new and more specific biomarkers. Based on this evidence, we analyzed the role of some PTMs in cancer and described the correlation between specific PTMs and T-cells activation/inhibition in cancer microenvironment. In the second part of this chapter, we analyzed the most commonly used approaches for qualitative and quantitative determination of PTMs. The comparison of three distinct but often complementary methodologies such as immunoblotting, mass spectrometry, and ELISA assays has allowed to highlight the pros and cons of each approach with a focus on their current application and their future developments to obtain more confident biomarkers and therapeutic targets useful for diagnosis, prognosis, and monitoring of the response to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jensen ON (2004) Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 8(1):33–41. https://doi.org/10.1016/j.cbpa.2003.12.009

    Article  CAS  PubMed  Google Scholar 

  2. Krueger KE, Srivastava S (2006) Posttranslational protein modifications: current implications for cancer detection, prevention, and therapeutics. Mol Cell Proteomics 5(10):1799–1810. https://doi.org/10.1074/mcp.R600009-MCP200

    Article  CAS  PubMed  Google Scholar 

  3. Sellers WR, Kaelin WG Jr (1997) Role of the retinoblastoma protein in the pathogenesis of human cancer. J Clin Oncol 15(11):3301–3312. https://doi.org/10.1200/JCO.1997.15.11.3301

    Article  CAS  PubMed  Google Scholar 

  4. Donnellan R, Chetty R (1998) Cyclin D1 and human neoplasia. Mol Pathol 51(1):1–7. https://doi.org/10.1136/mp.51.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81(3):323–330. https://doi.org/10.1016/0092-8674(95)90385-2

    Article  CAS  PubMed  Google Scholar 

  6. Baker GL, Landis MW, Hinds PW (2005) Multiple functions of D-type cyclins can antagonize pRb-mediated suppression of proliferation. Cell Cycle 4(2):330–338. https://doi.org/10.4161/cc.4.2.1485

    Article  CAS  PubMed  Google Scholar 

  7. Chatterjee SJ, George B, Goebell PJ et al (2004) Hyperphosphorylation of pRb: a mechanism for RB tumour suppressor pathway inactivation in bladder cancer. J Pathol 203(3):762–770. https://doi.org/10.1002/path.1567

    Article  CAS  PubMed  Google Scholar 

  8. Cinti C, Macaluso M, Giordano A (2005) Tumor-specific exon 1 mutations could be the ‘hit event’ predisposing Rb2/p130 gene to epigenetic silencing in lung cancer. Oncogene 24(38):5821–5826. https://doi.org/10.1038/sj.onc.1208880

    Article  CAS  PubMed  Google Scholar 

  9. Leslie NR, Downes CP (2004) PTEN function: how normal cells control it and tumour cells lose it. Biochem J 382(Pt 1):1–11. https://doi.org/10.1042/BJ20040825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Okahara F, Ikawa H, Kanaho Y, Maehama T (2004) Regulation of PTEN phosphorylation and stability by a tumor suppressor candidate protein. J Biol Chem 279:45300–45303. https://doi.org/10.1074/jbc.C400377200

    Article  CAS  PubMed  Google Scholar 

  11. Thomas SJ, Snowden JA, Zeidler MP, Danson SJ (2015) The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br J Cancer 113(3):365–371. https://doi.org/10.1038/bjc.2015.233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoganathan N, Yee A, Zhang Z et al (2002) Integrin-linked kinase, a promising cancer therapeutic target: biochemical and biological properties. Pharmacol Ther 93(2–3):233–242. https://doi.org/10.1016/S0163-7258(02)00192-4

    Article  CAS  PubMed  Google Scholar 

  13. Najafi M, Ahmadi A, Mortezaee K (2019) Extracellular-signal-regulated kinase/mitogen-activated protein kinase signaling as a target for cancer therapy: an updated review. Cell Biol Int 43(11):1206–1222. https://doi.org/10.1002/cbin.11187

    Article  CAS  PubMed  Google Scholar 

  14. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103(2):211–225. https://doi.org/10.1016/s0092-8674(00)00114-8

    Article  CAS  PubMed  Google Scholar 

  15. Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 1839(8):627–643. https://doi.org/10.1016/j.bbagrm.2014.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Audia JE, Campbell RM (2016) Histone modifications and cancer. Cold Spring Harb Perspect Biol 8(4):a019521. https://doi.org/10.1101/cshperspect.a019521

    Article  PubMed  PubMed Central  Google Scholar 

  17. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125:5591–5596. https://doi.org/10.1242/jcs.116392

    Article  CAS  PubMed  Google Scholar 

  18. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322. https://doi.org/10.1016/j.ccr.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  19. Andersen MH, Schrama D, thor Straten P, Becker JC (2006) Cytotoxic T cells. J Invest Dermatol 126(1):32–41. https://doi.org/10.1038/sj.jid5700001

    Article  CAS  PubMed  Google Scholar 

  20. Hashimoto M, Kamphorst AO, Im SJ et al (2018) CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. Annu Rev Med 69:301–318. https://doi.org/10.1146/annurev-med-012017-043208

    Article  CAS  PubMed  Google Scholar 

  21. Merelli B, Massi D, Cattaneo L, Mandalà M (2014) Targeting the PD1/PD-L1 axis in melanoma: biological rationale, clinical challenges and opportunities. Crit Rev Oncol Hematol 89(1):140–165. https://doi.org/10.1016/j.critrevonc.2013.08.002

    Article  PubMed  Google Scholar 

  22. Parry RV, Chemnitz JM, Frauwirth KA et al (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25(21):9543–9553. https://doi.org/10.1128/MCB.25.21.9543-9553.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Darvin P, Toor SM, Sasidharan Nair V, Elkord E (2018) Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 50(12):1–11. https://doi.org/10.1038/s12276-018-0191-1

    Article  CAS  PubMed  Google Scholar 

  24. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13(22):2905–2927. https://doi.org/10.1101/gad.13.22.2905

    Article  CAS  PubMed  Google Scholar 

  25. Jones RG, Parsons M, Bonnard M et al (2000) Protein kinase B regulates T lymphocyte survival, nuclear factor kappaB activation, and Bcl-X(L) levels in vivo. J Exp Med 191(10):1721–1734. https://doi.org/10.1084/jem.191.10.1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kane LP, Andres PG, Howland KC et al (2001) Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-gamma but not TH2 cytokines. Nat Immunol 2(1):37–44. https://doi.org/10.1038/83144

    Article  CAS  PubMed  Google Scholar 

  27. Rathmell JC, Elstrom RL, Cinalli RM, Thompson CB (2003) Activated Akt promotes increased resting T cell size, CD28-independent T cell growth, and development of autoimmunity and lymphoma. Eur J Immunol 33(8):2223–2232. https://doi.org/10.1002/eji.200324048

    Article  CAS  PubMed  Google Scholar 

  28. Frauwirth KA, Riley JL, Harris MH et al (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16(6):769–777. https://doi.org/10.1016/s1074-7613(02)00323-0

    Article  CAS  PubMed  Google Scholar 

  29. Sheppard KA, Fitz LJ, Lee JM et al (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 574(1–3):37–41. https://doi.org/10.1016/j.febslet.2004.07.083

    Article  CAS  PubMed  Google Scholar 

  30. Hsu JM, Li CW, Lai YJ, Hung MC (2018) Posttranslational modifications of PD-L1 and their applications in cancer therapy. Cancer Res 78(22):6349–6353. https://doi.org/10.1158/0008-5472.CAN-18-1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li CW, Lim SO, Xia W et al (2016) Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 7:12632. https://doi.org/10.1038/ncomms12632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76(9):4350–4354. https://doi.org/10.1073/pnas.76.9.4350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ni D, Xu P, Gallagher S (2017) Immunoblotting and immunodetection. Curr Protoc Cell Biol 74:6.2.1–6.2.37. https://doi.org/10.1002/cpcb.18

    Article  CAS  Google Scholar 

  34. Rustandi RR, Hamm M, Lancaster C, Loughney JW (2016) Applications of an automated and quantitative CE-based size and charge western blot for therapeutic proteins and vaccines. Methods Mol Biol 1466:197–217. https://doi.org/10.1007/978-1-4939-4014-1_16

    Article  CAS  PubMed  Google Scholar 

  35. Delom F, Chevet E (2006) Phosphoprotein analysis: from proteins to proteomes. Proteome Sci 4:15. https://doi.org/10.1186/1477-5956-4-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Santiago-Cardona PG, Pérez-Morales J, González-Flores J (2018) Detection of retinoblastoma protein phosphorylation by immunoblot analysis. Methods Mol Biol 1726:49–64. https://doi.org/10.1007/978-1-4939-7565-5_6

  37. Zhang J, Song F, Zhao X et al (2017) EGFR modulates monounsaturated fatty acid synthesis through phosphorylation of SCD1 in lung cancer. Mol Cancer 16(1):127. https://doi.org/10.1186/s12943-017-0704-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Enoch HG, Català A, Strittmatter P (1976) Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J Biol Chem 251(16):5095–5103

    Article  CAS  PubMed  Google Scholar 

  39. Bedri SK, Nilsson OB, Fink K et al (2019) Plasma protein profiling reveals candidate biomarkers for multiple sclerosis treatment. PLoS One 14(5):e0217208. https://doi.org/10.1371/journal.pone.0217208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Papale M, Vocino G, Lucarelli G et al (2017) Urinary RKIP/p-RKIP is a potential diagnostic and prognostic marker of clear cell renal cell carcinoma. Oncotarget 8(25):40412–40424. https://doi.org/10.18632/oncotarget.16341

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang Q, Wu X, Wu T et al (2014) Clinical significance of RKIP mRNA expression in non-small cell lung cancer. Tumour Biol 35(5):4377–4380. https://doi.org/10.1007/s13277-013-1575-4

    Article  CAS  PubMed  Google Scholar 

  42. Huerta-Yepez S, Yoon NK, Hernandez-Cueto A et al (2011) Expression of phosphorylated raf kinase inhibitor protein (pRKIP) is a predictor of lung cancer survival. BMC Cancer 11(1):259. https://doi.org/10.1186/1471-2407-11-259

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ghosh R, Gilda JE, Gomes AV (2014) The necessity of and strategies for improving confidence in the accuracy of western blots. Expert Rev Proteomics 11(5):549–560. https://doi.org/10.1586/14789450.2014.939635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang Z, Wu S, Stenoien DL, Paša-Tolić L (2014) High-throughput proteomics. Annu Rev Anal Chem 7:427–454. https://doi.org/10.1146/annurev-anchem-071213-020216

    Article  CAS  Google Scholar 

  45. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal Chem 60(20):2299–2301. https://doi.org/10.1021/ac00171a028

    Article  CAS  PubMed  Google Scholar 

  46. Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926):64–71. https://doi.org/10.1126/science.2675315

    Article  CAS  PubMed  Google Scholar 

  47. Finehout EJ, Lee KH (2004) An introduction to mass spectrometry applications in biological research. Biochem Mol Biol Educ 32(2):93–100. https://doi.org/10.1002/bmb.2004.494032020331

    Article  CAS  PubMed  Google Scholar 

  48. Zaluzec EJ, Gage DA, Watson JT (1995) Matrix-assisted laser desorption ionization mass spectrometry: applications in peptide and protein characterization. Protein Expr Purif 6(2):109–123. https://doi.org/10.1006/prep.1995.1014

    Article  CAS  PubMed  Google Scholar 

  49. Haag AM (2016) Mass analyzers and mass spectrometers. Adv Exp Med Biol 919:157–169. https://doi.org/10.1007/978-3-319-41448-5_7

    Article  CAS  PubMed  Google Scholar 

  50. Toby TK, Fornelli L, Kelleher NL (2016) Progress in top-down proteomics and the analysis of proteoforms. Annu Rev Anal Chem (Palo Alto, Calif) 9(1):499–519. https://doi.org/10.1146/annurev-anchem-071015-041550

    Article  CAS  Google Scholar 

  51. Siuti N, Kelleher NL (2007) Decoding protein modifications using top-down mass spectrometry. Nat Methods 4(10):817–821. https://doi.org/10.1038/nmeth1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tran JC, Doucette AA (2008) Rapid and effective focusing in a carrier ampholyte solution isoelectric focusing system: a proteome prefractionation tool. J Proteome Res 7(4):1761–1766. https://doi.org/10.1021/pr700677u

    Article  CAS  PubMed  Google Scholar 

  53. Donnelly DP, Rawlins CM, DeHart CJ et al (2019) Best practices and benchmarks for intact protein analysis for top-down mass spectrometry. Nat Methods 16(7):587–594. https://doi.org/10.1038/s41592-019-0457-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cleland TP, DeHart CJ, Fellers RT et al (2017) High-throughput analysis of intact human proteins using UVPD and HCD on an Orbitrap mass spectrometer. J Proteome Res 16(5):2072–2079. https://doi.org/10.1021/acs.jproteome.7b00043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bowman BM, Sebolt KA, Hoff BA et al (2015) Phosphorylation of FADD by the kinase CK1α promotes KRASG12D-induced lung cancer. Sci Signal 8(361):ra9. https://doi.org/10.1126/scisignal.2005607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liao SY, Kuo IY, Chen YT et al (2019) AKT-mediated phosphorylation enhances protein stability and transcription activity of ZNF322A to promote lung cancer progression. Oncogene 38(41):6723–6736. https://doi.org/10.1038/s41388-019-0928-x

    Article  CAS  PubMed  Google Scholar 

  57. Ruprecht B, Zaal EA, Zecha J et al (2017) Lapatinib resistance in breast cancer cells is accompanied by phosphorylation-mediated reprogramming of glycolysis. Cancer Res 77(8):1842–1853. https://doi.org/10.1158/0008-5472.CAN-16-2976

    Article  CAS  PubMed  Google Scholar 

  58. Andersson L, Porath J (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 154(1):250–254. https://doi.org/10.1016/0003-2697(86)90523-3

    Article  CAS  PubMed  Google Scholar 

  59. Posewitz MC, Tempst P (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71(14):2883–2892. https://doi.org/10.1021/ac981409y

    Article  CAS  PubMed  Google Scholar 

  60. Aydin S (2015) A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 72:4–15. https://doi.org/10.1016/j.peptides.2015.04.012

    Article  CAS  PubMed  Google Scholar 

  61. Sakamoto S, Putalun W, Vimolmangkang S et al (2018) Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J Nat Med 72(1):32–42. https://doi.org/10.1007/s11418-017-1144-z

    Article  CAS  PubMed  Google Scholar 

  62. Belanger L, Sylvestre C, Dufour D (1973) Enzyme-linked immunoassay for alpha-fetoprotein by competitive and sandwich procedures. Clin Chim Acta 48(1):15–18. https://doi.org/10.1016/0009-8981(73)90211-8

    Article  CAS  PubMed  Google Scholar 

  63. Fu HJ, Yuan LP, Shen YD et al (2018) A full-automated magnetic particle-based chemiluminescence immunoassay for rapid detection of cortisol in milk. Anal Chim Acta 1035:129–135. https://doi.org/10.1016/j.aca.2018.06.015

    Article  CAS  PubMed  Google Scholar 

  64. Fu X, Liu Y, Qiu R et al (2018) The fabrication of magnetic particle-based chemiluminescence immunoassay for human epididymis protein-4 detection in ovarian cancer. Biochem Biophys Rep 13:73–77. https://doi.org/10.1016/j.bbrep.2018.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wang N, Rayes RF, Elahi SM et al (2015) The IGF-Trap: novel inhibitor of carcinoma growth and metastasis. Mol Cancer Ther 14(4):982–993. https://doi.org/10.1158/1535-7163.MCT-14-0751

    Article  CAS  PubMed  Google Scholar 

  66. Bianco C, Giovannetti E, Ciardiello F et al (2006) Synergistic antitumor activity of ZD6474, an inhibitor of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling, with gemcitabine and ionizing radiation against pancreatic cancer. Clin Cancer Res 12(23):7099–7107. https://doi.org/10.1158/1078-0432.CCR-06-0833

    Article  CAS  PubMed  Google Scholar 

  67. Hirsch HA, Iliopoulos D, Struhl K (2013) Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci U S A 110(3):972–977. https://doi.org/10.1073/pnas.1221055110

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Papale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Deleonardis, A., Papale, M. (2021). Methods to Study Posttranslational Modification Patterns in Cytotoxic T-Cells and Cancer. In: Gigante, M., Ranieri, E. (eds) Cytotoxic T-Cells. Methods in Molecular Biology, vol 2325. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1507-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1507-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1506-5

  • Online ISBN: 978-1-0716-1507-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics