Skip to main content

Quantifying Proteome and Protein Modifications in Activated T Cells by Multiplexed Isobaric Labeling Mass Spectrometry

  • Protocol
  • First Online:
T-Helper Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2285))

Abstract

The dynamic regulation of protein function by altered protein expression and post-translational modifications (PTMs) is essential for T cell function, but it has remained difficult to systemically quantify such events. Mass spectrometry (MS)-based proteomics has become a mainstream tool for comprehensive profiling of proteome and PTMs, especially with the development of multiplexed isobaric labeling methods, such as tandem mass tag (TMT), coupled with high-resolution two-dimensional liquid chromatography and tandem mass spectrometry (LC/LC-MS/MS). Here, we introduce a deep proteomics profiling protocol with an optimized 11-plex TMT-LC/LC-MS/MS platform to quantitate whole proteome, phosphoproteome, acetylome, and methylome in activated T cells. The major steps include preparation of activated T cells, protein extraction and digestion, TMT labeling, basic pH reverse phase LC, modified peptide enrichment, acidic pH reverse phase LC-MS/MS, and computational data processing. Approximately 10,000 proteins, 30,000 phosphosites, 2,000 lysine acetylated sites, and 1,000 lysine methylated sites can be identified and quantified from 1 mg of proteins per sample. Quality control steps are implemented in this protocol, and future development, such as nanoscale 16-plex TMT analysis, is discussed. This multiplexed and robust method provides a powerful tool for dissecting proteomic and PTM signatures in T cells at the systems level, and it is equally suitable for other biological samples, including effector T cell subsets.

Haiyan Tan and Daniel Bastardo Blanco Co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hamilton SE, Jameson SC (2012) CD8 T cell quiescence revisited. Trends Immunol 33(5):224–230.

    Google Scholar 

  2. Hogquist KA, Xing Y, Hsu FC, Shapiro VS (2015) T cell adolescence: maturation events beyond positive selection. J Immunol 195(4):1351–1357.

    Google Scholar 

  3. Chapman NM, Boothby MR, Chi H (2020) Metabolic coordination of T cell quiescence and activation. Nat Rev Immunol 20(1):55–70.

    Google Scholar 

  4. Tan H, Yang K, Li Y, Shaw TI, Wang Y, Blanco DB, Wang X, Cho JH, Wang H, Rankin S, Guy C, Peng J, Chi H (2017) Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity 46(3):488–503.

    Google Scholar 

  5. Geltink RIK, Kyle RL, Pearce EL (2018) Unraveling the complex interplay between T cell metabolism and function. Annu Rev Immunol 36:461–488.

    Google Scholar 

  6. Mowen KA, David M (2014) Unconventional post-translational modifications in immunological signaling. Nat Immunol 15(6):512–520.

    Google Scholar 

  7. Chapman NM, Chi H (2018) Hallmarks of T-cell exit from quiescence. Cancer Immunol Res 6(5):502–508.

    Google Scholar 

  8. Yang K, Shrestha S, Zeng H, Karmaus PW, Neale G, Vogel P, Guertin DA, Lamb RF, Chi H (2013) T cell exit from quiescence and differentiation into Th2 cells depend on raptor-mTORC1-mediated metabolic reprogramming. Immunity 39(6):1043–1056.

    Google Scholar 

  9. Amit I, Regev A, Hacohen N (2011) Strategies to discover regulatory circuits of the mammalian immune system. Nat Rev Immunol 11(12):873–880.

    Google Scholar 

  10. Amit I, Garber M, Chevrier N, Leite AP, Donner Y, Eisenhaure T, Guttman M, Grenier JK, Li W, Zuk O, Schubert LA, Birditt B, Shay T, Goren A, Zhang X, Smith Z, Deering R, McDonald RC, Cabili M, Bernstein BE, Rinn JL, Meissner A, Root DE, Hacohen N, Regev A (2009) Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326(5950):257–263.

    Google Scholar 

  11. Mann M, Kulak NA, Nagaraj N, Cox J (2013) The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell 49(4):583–590.

    Google Scholar 

  12. Nussinov R, Tsai CJ, Xin F, Radivojac P (2012) Allosteric post-translational modification codes. Trends Biochem Sci 37(10):447–455.

    Google Scholar 

  13. Ricciardi S, Manfrini N, Alfieri R, Calamita P, Crosti MC, Gallo S, Muller R, Pagani M, Abrignani S, Biffo S (2018) The translational machinery of human CD4(+) T cells is poised for activation and controls the switch from quiescence to metabolic remodeling. Cell Metab 28(6):895–906. e895.

    Google Scholar 

  14. Bai B, Hales CM, Chen PC, Gozal Y, Dammer EB, Fritz JJ, Wang X, Xia Q, Duong DM, Street C, Cantero G, Cheng D, Jones DR, Wu Z, Li Y, Diner I, Heilman CJ, Rees HD, Wu H, Lin L, Szulwach KE, Gearing M, Mufson EJ, Bennett DA, Montine TJ, Seyfried NT, Wingo TS, Sun YE, Jin P, Hanfelt J, Willcock DM, Levey A, Lah JJ, Peng J (2013) U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer’s disease. Proc Natl Acad Sci U S A 110(41):16562–16567.

    Google Scholar 

  15. Wang H, Diaz AK, Shaw TI, Li Y, Niu M, Cho JH, Paugh BS, Zhang Y, Sifford J, Bai B, Wu Z, Tan H, Zhou S, Hover LD, Tillman HS, Shirinifard A, Thiagarajan S, Sablauer A, Pagala V, High AA, Wang X, Li C, Baker SJ, Peng J (2019) Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes. Nat Commun 10(1):3718.

    Google Scholar 

  16. Stewart E, McEvoy J, Wang H, Chen X, Honnell V, Ocarz M, Gordon B, Dapper J, Blankenship K, Yang Y, Li Y, Shaw TI, Cho JH, Wang X, Xu B, Gupta P, Fan Y, Liu Y, Rusch M, Griffiths L, Jeon J, Freeman BB 3rd, Clay MR, Pappo A, Easton J, Shurtleff S, Shelat A, Zhou X, Boggs K, Mulder H, Yergeau D, Bahrami A, Mardis ER, Wilson RK, Zhang J, Peng J, Downing JR, Dyer MA, St. Jude Children’s Research Hospital – Washington University Pediatric Cancer Genome P (2018) Identification of therapeutic targets in rhabdomyosarcoma through integrated genomic, epigenomic, and proteomic analyses. Cancer Cell 34(3):411–426. e419.

    Google Scholar 

  17. Dey KK, Wang H, Niu M, Bai B, Wang X, Li Y, Cho JH, Tan H, Mishra A, High AA, Chen PC, Wu Z, Beach TG, Peng J (2019) Deep undepleted human serum proteome profiling toward biomarker discovery for Alzheimer’s disease. Clin Proteomics 16:16.

    Google Scholar 

  18. Niu M, Cho JH, Kodali K, Pagala V, High AA, Wang H, Wu Z, Li Y, Bi W, Zhang H, Wang X, Zou W, Peng J (2017) Extensive peptide fractionation and y1 ion-based interference detection method for enabling accurate quantification by isobaric labeling and mass spectrometry. Anal Chem 89(5):2956–2963.

    Google Scholar 

  19. Bai B, Tan H, Pagala VR, High AA, Ichhaporia VP, Hendershot L, Peng J (2017) Deep profiling of proteome and phosphoproteome by isobaric labeling, extensive liquid chromatography, and mass spectrometry. Methods Enzymol 585:377–395.

    Google Scholar 

  20. Tan H, Wu Z, Wang H, Bai B, Li Y, Wang X, Zhai B, Beach TG, Peng J (2015) Refined phosphopeptide enrichment by phosphate additive and the analysis of human brain phosphoproteome. Proteomics 15(2–3):500–507.

    Google Scholar 

  21. Svinkina T, Gu H, Silva JC, Mertins P, Qiao J, Fereshetian S, Jaffe JD, Kuhn E, Udeshi ND, Carr SA (2015) Deep, quantitative coverage of the lysine Acetylome using novel anti-acetyl-lysine antibodies and an optimized proteomic workflow. Mol Cell Proteomics 14(9):2429–2440.

    Google Scholar 

  22. Guo A, Gu H, Zhou J, Mulhern D, Wang Y, Lee KA, Yang V, Aguiar M, Kornhauser J, Jia X, Ren J, Beausoleil SA, Silva JC, Vemulapalli V, Bedford MT, Comb MJ (2014) Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol Cell Proteomics 13(1):372–387.

    Google Scholar 

  23. Wang X, Li Y, Wu Z, Wang H, Tan H, Peng J (2014) JUMP: a tag-based database search tool for peptide identification with high sensitivity and accuracy. Mol Cell Proteomics 13(12):3663–3673.

    Google Scholar 

  24. Li Y, Wang X, Cho JH, Shaw TI, Wu Z, Bai B, Wang H, Zhou S, Beach TG, Wu G, Zhang J, Peng J (2016) JUMPg: an integrative Proteogenomics pipeline identifying unannotated proteins in human brain and cancer cells. J Proteome Res 15(7):2309–2320.

    Google Scholar 

  25. Xu P, Duong DM, Peng J (2009) Systematical optimization of reverse-phase chromatography for shotgun proteomics. J Proteome Res 8(8):3944–3950.

    Google Scholar 

  26. Switzar L, Giera M, Niessen WM (2013) Protein digestion: an overview of the available techniques and recent developments. J Proteome Res 12(3):1067–1077.

    Google Scholar 

  27. Pagala VR, High AA, Wang X, Tan H, Kodali K, Mishra A, Kavdia K, Xu Y, Wu Z, Peng J (2015) Quantitative protein analysis by mass spectrometry. Methods Mol Biol 1278:281–305.

    Google Scholar 

  28. Batth TS, Francavilla C, Olsen JV (2014) Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics. J Proteome Res 13(12):6176–6186.

    Google Scholar 

  29. Ting L, Rad R, Gygi SP, Haas W (2011) MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods 8(11):937–940.

    Google Scholar 

  30. Savitski MM, Sweetman G, Askenazi M, Marto JA, Lang M, Zinn N, Bantscheff M (2011) Delayed fragmentation and optimized isolation width settings for improvement of protein identification and accuracy of isobaric mass tag quantification on Orbitrap-type mass spectrometers. Anal Chem 83(23):8959–8967.

    Google Scholar 

  31. Wenger CD, Lee MV, Hebert AS, McAlister GC, Phanstiel DH, Westphall MS, Coon JJ (2011) Gas-phase purification enables accurate, multiplexed proteome quantification with isobaric tagging. Nat Methods 8(11):933–935.

    Google Scholar 

  32. McAlister GC, Nusinow DP, Jedrychowski MP, Wuhr M, Huttlin EL, Erickson BK, Rad R, Haas W, Gygi SP (2014) MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 86(14):7150–7158.

    Google Scholar 

  33. Zhou F, Lu Y, Ficarro SB, Adelmant G, Jiang W, Luckey CJ, Marto JA (2013) Genome-scale proteome quantification by DEEP SEQ mass spectrometry. Nat Commun 4:2171.

    Google Scholar 

  34. Rauniyar N, Yates JR 3rd (2014) Isobaric labeling-based relative quantification in shotgun proteomics. J Proteome Res 13(12):5293–5309.

    Google Scholar 

  35. Trelle MB, Jensen ON (2008) Utility of immonium ions for assignment of epsilon-N-acetyllysine-containing peptides by tandem mass spectrometry. Anal Chem 80(9):3422–3430.

    Google Scholar 

  36. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372.

    Google Scholar 

  37. Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2(1):43–50.

    Google Scholar 

  38. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4(3):207–214.

    Google Scholar 

  39. Taus T, Kocher T, Pichler P, Paschke C, Schmidt A, Henrich C, Mechtler K (2011) Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res 10(12):5354–5362.

    Google Scholar 

  40. Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24(10):1285–1292.

    Google Scholar 

  41. Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137(1):133–145.

    Google Scholar 

  42. Nielsen ML, Vermeulen M, Bonaldi T, Cox J, Moroder L, Mann M (2008) Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nat Methods 5(6):459–460.

    Google Scholar 

  43. Villen J, Gygi SP (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 3(10):1630–1638.

    Google Scholar 

  44. Pirmoradian M, Budamgunta H, Chingin K, Zhang B, Astorga-Wells J, Zubarev RA (2013) Rapid and deep human proteome analysis by single-dimension shotgun proteomics. Mol Cell Proteomics 12(11):3330–3338.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge N. Chapman for editing of the manuscript. This work was partially supported by the National Institutes of Health (AG047928, AG053987, GM114260 to J.P.; AI105887, AI131703, AI140761, AI150514, CA221290, NS064599 to H.C.) and ALSAC (American Lebanese Syrian Associated Charities).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbo Chi or Junmin Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tan, H. et al. (2021). Quantifying Proteome and Protein Modifications in Activated T Cells by Multiplexed Isobaric Labeling Mass Spectrometry. In: Annunziato, F., Maggi, L., Mazzoni, A. (eds) T-Helper Cells. Methods in Molecular Biology, vol 2285. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1311-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1311-5_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1310-8

  • Online ISBN: 978-1-0716-1311-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics