Skip to main content

Qualitative and Quantitative Assessment of the Role of Endocytic Regulatory and/or Rab Proteins on Mitochondrial Fusion and Fission

  • Protocol
  • First Online:
Rab GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2293))

  • 782 Accesses

Abstract

Mitochondria are the major energy generating organelle in the cell; accordingly mitochondrial homeostasis is key to mitochondrial function. In recent years, new paradigms have uncovered roles for endocytic regulatory proteins in the control of mitochondrial fusion and fission, thus highlighting the utility of techniques for the study of mitochondrial morphology. Herein we detail methods to qualitatively and quantitatively measure the impact of select proteins on mitochondrial fusion and fission in human retinal pigmented epithelial (RPE1) cells. We demonstrate how commercially available small interfering RNA (siRNA) can be used to target various endocytic regulatory proteins, and freely available software can be used to evaluate the impact of these proteins on mitochondria by quantifying their effect on mitochondrial morphology. It is our goal to provide simple protocols that may prove useful for researchers new to the realm of endocytic regulatory proteins and mitochondrial homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35(9):505–513

    Article  CAS  Google Scholar 

  2. Duchen MR (2000) Mitochondria and calcium: from cell signalling to cell death. J Physiol 529(Pt 1):57–68

    Article  CAS  Google Scholar 

  3. Nicholls DG (2005) Mitochondria and calcium signaling. Cell Calcium 38(3–4):311–317

    Article  CAS  Google Scholar 

  4. Wang C, Youle RJ (2009) The role of mitochondria in apoptosis*. Annu Rev Genet 43:95–118

    Article  CAS  Google Scholar 

  5. Horowitz MP, Greenamyre JT (2010) Mitochondrial iron metabolism and its role in neurodegeneration. J Alzheimers Dis 20(Suppl 2):S551–S568

    Article  Google Scholar 

  6. Richardson DR, Lane DJ, Becker EM, Huang ML, Whitnall M, Suryo Rahmanto Y, Sheftel AD, Ponka P (2010) Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc Natl Acad Sci U S A 107(24):10775–10782

    Article  CAS  Google Scholar 

  7. Srivastava S (2017) The mitochondrial basis of aging and age-related disorders. Genes (Basel) 8(12):398

    Article  Google Scholar 

  8. Sun N, Youle RJ, Finkel T (2016) The mitochondrial basis of aging. Mol Cell 61(5):654–666

    Article  CAS  Google Scholar 

  9. Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22(12):1577–1590

    Article  CAS  Google Scholar 

  10. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160(2):189–200

    Article  CAS  Google Scholar 

  11. Twig G, Shirihai OS (2011) The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal 14(10):1939–1951

    Article  CAS  Google Scholar 

  12. Smirnova E, Griparic L, Shurland DL, van der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12(8):2245–2256

    Article  CAS  Google Scholar 

  13. Lee JE, Westrate LM, Wu H, Page C, Voeltz GK (2016) Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540(7631):139–143

    Article  CAS  Google Scholar 

  14. Pagliuso A, Cossart P, Stavru F (2018) The ever-growing complexity of the mitochondrial fission machinery. Cell Mol Life Sci 75(3):355–374

    Article  CAS  Google Scholar 

  15. Follett J, Bugarcic A, Collins BM, Teasdale RD (2017) Retromer’s role in endosomal trafficking and impaired function in neurodegenerative diseases. Curr Protein Pept Sci 18(7):687–701

    Article  CAS  Google Scholar 

  16. Wang W, Wang X, Fujioka H, Hoppel C, Whone AL, Caldwell MA, Cullen PJ, Liu J, Zhu X (2016) Parkinson's disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Nat Med 22(1):54–63

    Article  CAS  Google Scholar 

  17. Wang W, Ma X, Zhou L, Liu J, Zhu X (2017) A conserved retromer sorting motif is essential for mitochondrial DLP1 recycling by VPS35 in Parkinson's disease model. Hum Mol Genet 26(4):781–789

    CAS  PubMed  Google Scholar 

  18. Tang FL, Liu W, Hu JX, Erion JR, Ye J, Mei L, Xiong WC (2015) VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function. Cell Rep 12(10):1631–1643

    Article  CAS  Google Scholar 

  19. Arighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS (2004) Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 165(1):123–133

    Article  CAS  Google Scholar 

  20. Farmer T, Reinecke JB, Xie S, Bahl K, Naslavsky N, Caplan S (2017) Control of mitochondrial homeostasis by endocytic regulatory proteins. J Cell Sci 130(14):2359–2370

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wong YC, Ysselstein D, Krainc D (2018) Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554(7692):382–386

    Article  CAS  Google Scholar 

  22. Landry MC, Champagne C, Boulanger MC, Jette A, Fuchs M, Dziengelewski C, Lavoie JN (2014) A functional interplay between the small GTPase Rab11a and mitochondria-shaping proteins regulates mitochondrial positioning and polarization of the actin cytoskeleton downstream of Src family kinases. J Biol Chem 289(4):2230–2249

    Article  CAS  Google Scholar 

  23. Alto NM, Soderling J, Scott JD (2002) Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. J Cell Biol 158(4):659–668

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Caplan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Farmer, T., Caplan, S. (2021). Qualitative and Quantitative Assessment of the Role of Endocytic Regulatory and/or Rab Proteins on Mitochondrial Fusion and Fission. In: Li, G., Segev, N. (eds) Rab GTPases. Methods in Molecular Biology, vol 2293. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1346-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1346-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1345-0

  • Online ISBN: 978-1-0716-1346-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics