Skip to main content

Methods for Chromosome Doubling

  • Protocol
  • First Online:
Doubled Haploid Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2287))

Abstract

The completely homozygous genetic background of doubled haploids (DHs) has many applications in breeding programs and research studies. Haploid induction and chromosome doubling of induced haploids are the two main steps of doubled haploid creation. Both steps have their own complexities. Chromosome doubling of induced haploids may happen spontaneously, although usually at a low rate. Therefore, artificial/induced chromosome doubling of haploid cells/plantlets is necessary to produce DHs at an acceptable level. The most common method is using some mitotic spindle poisons that target the organization of the microtubule system. Colchicine is a well-known and widely used antimitotic. However, there are substances alternative to colchicine in terms of efficiency, toxicity, safety, and genetic stability, which can be applied in in vitro and in vivo pathways. Both pathways have their own advantages and disadvantages. However, in vitro-induced chromosome doubling has been much preferred in recent years, maybe because of the dual effect of antimitotic agents (haploid induction and chromosome doubling) in just one step, and the reduced generation of chimeras. Plant genotype, the developmental stage of initial haploids, and type–concentration–duration of application of antimitotic agents, are top influential parameters on chromosome doubling efficiency. In this review, we highlight different aspects related to antimitotic agents and to plant parameters for successful chromosome doubling and high DH yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Broughton S, Castello M, Liu L, Killen J, Hepworth A, O’Leary R (2020) The effect of caffeine and trifluralin on chromosome doubling in wheat anther culture. Plan Theory 9(105):1–14

    Google Scholar 

  2. Germanà MA (2011) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30(5):839–857

    Article  PubMed  CAS  Google Scholar 

  3. Seguí-Simarro JM (2016) Androgenesis in Solanaceae. In: Germana M, Lambardi M (eds) In Vitro embryogenesis in higher plants. Methods in molecular biology, vol 1359. Humana, New York, NY

    Google Scholar 

  4. Segui-Simarro JM, Nuez F (2008) Pathways to doubled haploidy: chromosome doubling during androgenesis. Cytogenet Genom Res 120:358–369

    Article  CAS  Google Scholar 

  5. Ren J, Wu P, Trampe B, Tian X, Lübberstedt T, Chen S (2017) Novel technologies in doubled haploid line development. Plant Biotechnol J 15(11):1361–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shariatpanahi ME, Ahmadi B (2016) Isolated microspore culture and its applications in plant breeding and genetics. In: Anis M, Ahmad N (eds) Plant tissue culture: propagation, conservation and crop improvement. Springer, Singapore

    Google Scholar 

  7. Kumlehn J, Serazetdinova L, Hensel G, Becker D, Loerz H (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with agrobacterium tumefaciens. Plant Biotechnol J 4(2):251–261

    Article  CAS  PubMed  Google Scholar 

  8. Eudes F, Shim YS, Jiang F (2014) Engineering the haploid genome of microspores. Biocatal Agric Biotechnol 3(1):20–23

    Article  Google Scholar 

  9. Chugh A, Amundsen E, Eudes F (2009) Translocation of cell-penetrating peptides and delivery of their cargoes in triticale microspores. Plant Cell Rep 28(5):801–810

    Article  CAS  PubMed  Google Scholar 

  10. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142(1–2):169–196

    Article  CAS  Google Scholar 

  11. Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363(1491):557–572

    Article  CAS  PubMed  Google Scholar 

  12. Sanchez DL, Liu S, Ibrahim R, Blanco M, Lübberstedt T (2018) Genome-wide association studies of doubled haploid exotic introgression lines for root system architecture traits in maize (Zea mays L.). Plant Sci 268:30–38

    Article  CAS  PubMed  Google Scholar 

  13. Seyis F, Aydin E, Çatal Mİ (2014) Haploids in the improvement of crucifers. Türk Tarım Doğa Bilimleri 7(7):1419–1424

    Google Scholar 

  14. Dong YQ, Zhao WX, Li XH, Liu XC, Gao NN, Huang JH, Wang WY, Xu XL, Tang ZH (2016) Androgenesis, gynogenesis, and parthenogenesis haploids in cucurbit species. Plant Cell Rep 35(10):1991–2019

    Article  CAS  PubMed  Google Scholar 

  15. Dirks R, Van Dun K, De Snoo CB, Van Den Berg M, Lelivelt CL, Voermans W, Woudenberg L, De Wit JP, Reinink K, Schut JW, Van Der Zeeuw E (2009) Reverse breeding: a novel breeding approach based on engineered meiosis. Plant Biotechnol J 7(9):837–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kasha KJ (2005) Chromosome doubling and recovery of doubled haploid plants. In: Palmer CE, Keller WA, Kasha KJ (eds) Haploids in crop improvement II, vol 56. Springer-Verlag, Berlin, pp 123–152

    Chapter  Google Scholar 

  17. Kasha KJ, Maluszynski M (2003) Production of doubled haploids in crop plants. An introduction. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Springer, Dordrecht

    Chapter  Google Scholar 

  18. Santeramo D, Howell J, Ji Y, Yu W, Liu W, Kelliher T (2020) DNA content equivalence in haploid and diploid maize leaves. Planta 251(1):30

    Article  CAS  Google Scholar 

  19. Ahmadi B, Ebrahimzadeh H (2020) In vitro androgenesis: spontaneous vs. artificial genome doubling and characterization of regenerants. Plant Cell Rep 39(3):299–316

    Article  CAS  PubMed  Google Scholar 

  20. Castillo AM, Cistué L, Vallés MP, Soriano M (2009) Chromosome doubling in monocots. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Dordrecht

    Google Scholar 

  21. Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ Cult 104(3):359–373

    Article  Google Scholar 

  22. Yuan S, Su Y, Liu Y, Li Z, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H, Sun P (2015) Chromosome doubling of microspore-derived plants from cabbage (Brassica oleracea var. capitata L.) and broccoli (Brassica oleracea var. italica L.). Front Plant Sci 6:1118

    Article  PubMed  PubMed Central  Google Scholar 

  23. Palmer CE, Keller WA, Arnison PG (1996) Utilization of Brassica haploids. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Kluwer Academic Publishers, Dordrecht, pp 173–192

    Chapter  Google Scholar 

  24. Hofinger BJ, Huynh OA, Jankowicz-Cieslak J, Müller A, Otto I, Kumlehn J, Till BJ (2013) Validation of doubled haploid plants by enzymatic mismatch cleavage. Plant Methods 9(43):1–10

    Google Scholar 

  25. Daghma DES, Hensel G, Rutten T, Melzer M, Kumlehn J (2014) Cellular dynamics during early barley pollen embryogenesis revealed by time-lapse imaging. Front Plant Sci 5(675):1–14

    Google Scholar 

  26. Kahrizi D, Mohammadi R (2009) Study of androgenesis and spontaneous chromosome doubling in barley (Hordeum vulgare L.) genotypes using isolated microspore culture. Acta Agron Hung 57(2):155–164

    Article  Google Scholar 

  27. Li JR, Zhuang FY, Ou CG, Hu H, Zhao ZW, Mao JH (2013) Microspore embryogenesis and production of haploid and doubled haploid plants in carrot (Daucus carota L.). Plant Cell Tissue Organ Cult 112:275–287

    Article  Google Scholar 

  28. Kleiber D, Prigge V, Melchinger AE, Burkard F, San Vicente F, Palomino G, Gordillo GA (2012) Haploid fertility in temperate and tropical maize germplasm. Crop Sci 52:623–630

    Article  Google Scholar 

  29. Kasha KJ, Hu TC, Oro R, Simion E, Shim YS (2001) Nuclear fusion leads to chromosome doubling during mannitol pretreatment of barley (Hordeum vulgare L.) microspores. J Exp Bot 52(359):1227–1238

    CAS  PubMed  Google Scholar 

  30. Maluszynska J (2003) Cytogenetic tests for ploidy level analyseschromosome counting. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht, pp 391–395

    Chapter  Google Scholar 

  31. Cistue L, Castan MS, Castillo A, Valles MP, Sanz JM, Echavari B (2006) Production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Rep 25(4):275–264

    Article  CAS  Google Scholar 

  32. Weber S, Nker F, Friedt W (2005) Improved doubled haploid production protocol for Brassica napus using microspore colchicine treatment in vitro and ploidy determination by flow cytometry. Plant Breed 124:511–513

    Article  Google Scholar 

  33. da Silva Dias JC (2003) Protocol for broccoli microspore culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic, Dordrecht, pp 195–204

    Chapter  Google Scholar 

  34. Martin B, Widholm JM (1996) Ploidy of small individual embryo-like structures from maize anther cultures treated with chromosome doubling agents and calli derived from them. Plant Cell Rep 15:781–785

    Article  CAS  PubMed  Google Scholar 

  35. Gervais C, Newcomb W, Simmonds DH (2000) Rearrangement of the actin filament and microtubule cytoskeleton during induction of microspore embryogenesis in Brassica napus L. cv. Topas. Protoplasma 213(3–4):194–202

    Article  Google Scholar 

  36. Dubas E, Custers J, Kieft H, Wędzony M, van Lammeren AAM (2011) Microtubule configurations and nuclear DNA synthesis during initiation of suspensor-bearing embryos from Brassica napus cv Topas microspores. Plant Cell Rep 30(11):2105–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li H, Devaux P (2003) High frequency regeneration of barley doubled haploid plants from isolated microspore culture. Plant Sci 164(3):379–386

    Article  CAS  Google Scholar 

  38. Soriano M, Cistue L, Valles MP, Castillo AM (2007) Effects of colchicine on anther and microspore culture of bread wheat (Triticum aestivum L.). Plant Cell Tissue Organ Cult 91(3):225–234

    Article  CAS  Google Scholar 

  39. Sato S, Katoh N, Iwai S, Hagimori M (2005) Frequency of spontaneous polyploidization of embryos regenerated from cultured anthers or microspores of Brassica rap a var. pekinensis L. and B. oleracea var. capitata L. Breed Sci 55:99–102

    Article  Google Scholar 

  40. Hu T, Kasha KJ (1996) Performance of isolated microspore-derived doubled haploids of wheat (Triticum aestivum L.). Can J Plant Sci 77(4):549–555

    Article  Google Scholar 

  41. Jauhar PP, Dogramacı-Altuntepe M, Peterson TS, Almouslem AB (2000) Seedset on synthetic haploids of durum wheat: cytological and molecular investigations. Crop Sci 40:1742–1749

    Article  Google Scholar 

  42. Jauhar PP (2007) Meiotic restitution in wheat polyhaploids and amphihaploids: a potent force in evolution of the Triticeae. J Hered 98:188–193

    Article  CAS  PubMed  Google Scholar 

  43. Takahira J, Cousin A, Nelson MN, Cowling WA (2011) Improvement in efficiency of microspore culture to produce doubled haploid canola (Brassica napus L.) by flow cytometry. Plant Cell Tissue Organ Cult 104(1):51–59

    Article  Google Scholar 

  44. Joubés J, Chevalier C (2000) Endoreduplication in higher plants. Plant Mol Biol 43:735–745

    Article  PubMed  Google Scholar 

  45. Weber J, Georgiev V, Pavlov A, Bley T (2008) Flow cytometric investigations of diploid and tetraploid plants and in vitro cultures of Datura stramonium and Hyoscyamus niger. Cytometry A 73:931–939

    Article  PubMed  Google Scholar 

  46. Perera PIP, Ordoñez CA, Lopez-Lavalle LAB, Dedicova B (2014) A milestone in the doubled haploid pathway of cassava. Protoplasma 251:233–246

    Article  CAS  PubMed  Google Scholar 

  47. Testillano PS, Georgiev S, Mogensen HL, Coronado MJ, Dumas C, Risueno MC, Matthys-Rochon E (2004) Spontaneous chromosome doubling results from nuclear fusion during in vitro maize induced microspore embryogenesis. Chromosoma 112(7):342–349

    Article  CAS  PubMed  Google Scholar 

  48. Shim YS, Kasha KJ, Simion E, Letarte J (2006) The relationship between induction of embryogenesis and chromosome doubling in microspore cultures. Protoplasma 228(1–3):79–86

    Article  CAS  PubMed  Google Scholar 

  49. Acharya BC, Ramji MV (1977) Experimental androgenesis in plants – a review. Proc Indian Acad Sci 86(6):337–360

    Article  Google Scholar 

  50. Sarto GE, Stubblefield PA, Therman E (1982) Endomitosis in human trophoblast. Human Genet 62(3):228–232

    Article  CAS  Google Scholar 

  51. Lee HO, Davidson JM, Duronio RJ (2009) Endoreplication: polyploidy with purpose. Gen Dev 23:2461–2477

    Article  CAS  Google Scholar 

  52. Malallah GA, Afzal M, Attia TA, Abraham D (1996) Tapetal cell nuclear characteristics of some Kuwaiti plants. Cytologia 61:259–267

    Article  Google Scholar 

  53. Sharma SK, Kumaria S, Tandon P, Rao SR (2012) Endomitosis in tapetal cells of some Cymbidiums (Orchidaceae). Nucleus 55:21–25

    Article  Google Scholar 

  54. Hüsemann LC, Reese A, Radine C, Piekorz RP, Budach W, Sohn D, Jänicke RU (2020) The microtubule targeting agents eribulin and paclitaxel activate similar signaling pathways and induce cell death predominantly in a caspase-independent manner. Cell Cycle 19(4):464–478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Silva P, Barbosa J, Nascimento AV, Faria J, Reis R, Bousbaa H (2011) Monitoring the fidelity of mitotic chromosome segregation by the spindle assembly checkpoint. Cell Prolif 44(5):391–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dube D, Tiwari P, Kaur P (2016) The hunt for antimitotic agents: an overview of structure-based design strategies. Expert Opin Drug Discov 11(6):579–597

    Article  CAS  PubMed  Google Scholar 

  57. Schmidt M, Bastians H (2007) Mitotic drug targets and the development of novel anti-mitotic anticancer drugs. Drug Resist Up 10(4–5):162–181

    Article  CAS  Google Scholar 

  58. Downing KH (2000) Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu Rev Cell Dev Biol 16:89–111

    Article  CAS  PubMed  Google Scholar 

  59. Chaikam V, Molenaar W, Melchinger AE, Boddupalli PM (2019) Doubled haploid technology for line development in maize: technical advances and prospects. Theor Appl Genet 132:3227–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ebrahimzadeh H, Soltanloo H, Shariatpanahi ME, Eskandari A, Ramezanpour SS (2018) Improved chromosome doubling of parthenogenetic haploid plants of cucumber (Cucumis sativus L.) using colchicine, trifluralin, and oryzalin. Plant Cell Tissue Organ Cult 135(3):407–417

    Article  CAS  Google Scholar 

  61. Grosso V, Farina A, Giorgi D, Nardi L, Diretto G, Lucretti S (2018) A high-throughput flow cytometry system for early screening of in vitro made polyploids in Dendrobium hybrids. Plant Cell Tissue Organ Cult 132(1):57–70

    Article  Google Scholar 

  62. Sood S, Dwivedi S (2015) Doubled haploid platform: an accelerated breeding approach for crop improvement. In: Bahadur B, Venkat RM, Sahijram L, Krishnamurthy K (eds) Plant biology and biotechnology, volume II: plant genomicsand biotechnology. Springer, New Delhi, pp 89–111

    Chapter  Google Scholar 

  63. Noori SAS, Norouzi M, Karimzadeh G, Shirkool K, Niazian M (2017) Effect of colchicine-induced polyploidy on morphological characteristics and essential oil composition of ajowan (Trachyspermum ammi L.). Plant Cell Tissue Organ Cult 130(3):543–551

    Article  CAS  Google Scholar 

  64. Sivakumar G, Alba K, Phillips GC (2017) Biorhizome: a biosynthetic platform for colchicine biomanufacturing. Front Plant Sci 8:1137

    Article  PubMed  PubMed Central  Google Scholar 

  65. Eng WH, Ho WS (2019) Polyploidization using colchicine in horticultural plants: a review. Sci Hortic 246:604–617

    Article  CAS  Google Scholar 

  66. Melchinger AE, Molenaar WS, Mirdita V, Schipprack W (2016) Colchicine alternatives for chromosome doubling in maize haploids for doubled-haploid production. Crop Sci 56(2):559–569

    Article  CAS  Google Scholar 

  67. Pintos B, Manzanera JA, Bueno MA (2007) Antimitotic agents increase the production of doubled-haploid embryos from cork oak anther culture. J Plant Physiol 164(12):1595–1604

    Article  CAS  PubMed  Google Scholar 

  68. Pazuki A, Aflaki F, Gürel S, Ergül A, Gürel E (2018) Production of doubled haploids in sugar beet (Beta vulgaris): an efficient method by a multivariate experiment. Plant Cell Tissue Org Cult 132(1):85–97

    Article  CAS  Google Scholar 

  69. Aqafarini A, Lotfi M, Norouzi M, Karimzadeh G (2019) Induction of tetraploidy in garden cress: morphological and cytological changes. Plant Cell Tissue Organ Cult 137(3):627–635

    Article  CAS  Google Scholar 

  70. Fu L, Zhu Y, Li M, Wang C, Sun H (2019) Autopolyploid induction via somatic embryogenesis in Lilium distichum Nakai and Lilium cernuum Komar. Plant Cell Tissue Organ Cult 139:237–248

    Article  CAS  Google Scholar 

  71. Khalili S, Niazian M, Arab M, Norouzi M (2019) In vitro chromosome doubling of African daisy, Gerbera jamesonii bolus cv. Mini red. Nucleus 63:59–65

    Article  Google Scholar 

  72. Sabzehzari M, Hoveidamanesh S, Modarresi M, Mohammadi V (2019) Morphological, anatomical, physiological, and cytological studies in diploid and tetraploid plants of Plantago psyllium. Plant Cell Tissue Organ Cult 139(1):131–137

    Article  CAS  Google Scholar 

  73. Ye YM, Tong J, Shi XP, Yuan W, Li GR (2010) Morphological and cytological studies of diploid and colchicine-induced tetraploid lines of crape myrtle (Lagerstroemia indica L.). Sci Hortic 124(1):95–101

    Article  Google Scholar 

  74. He M, Gao W, Gao Y, Liu Y, Yang X, Jiao H, Zhou Y (2016) Polyploidy induced by colchicine in Dendranthema indicum var. Aromaticum, a scented chrysanthemum. Eur J Hortic Sci 81(4):219–226

    Article  Google Scholar 

  75. Xu C, Zhang Y, Huang Z, Yao P, Li Y, Kang X (2018) Impact of the leaf cut callus development stages of Populus on the tetraploid production rate by colchicine treatment. J Plant Growth Regul 37(2):635–644

    Article  CAS  Google Scholar 

  76. Rao PS, Suprasanna P (1996) Methods to double haploid chromosome numbers. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Current plant science and biotechnology in agriculture, vol 23. Springer, Dordrecht

    Google Scholar 

  77. Qi-Qing LI, Zhang J, Ji-Hua LIU, Bo-Yang YU (2018) Morphological and chemical studies of artificial Andrographis paniculata polyploids. Chin J Nat Med 16(2):81–89

    Google Scholar 

  78. Sun FY, Liu L, Yu Y, Ruan XM, Wang CY, Hu QW, Wu DX, Sun G (2020) MicroRNA-mediated responses to colchicine treatment in barley. Planta 251(2):1–14

    Article  CAS  Google Scholar 

  79. Jensen CJ (1975) Barley monoploids and doubled monoploids: technique and experience. In: H. Gaul Proceedings of the 3rd international barley genetics symposium., 316–345. Verlag Karl Thiemeg, Munich

    Google Scholar 

  80. Subrahmanyam NC, Kasha KJ (1975) Chromosome doubling of barley haploids by nitrous oxide and colchicine treatments. Can J Genet Cytol 17(4):573–583

    Article  CAS  Google Scholar 

  81. Premvaranon P, Vearasilp S, Thanapornpoonpong S, Karladee D, Gorinstein S (2011) In vitro studies to produce double haploid in Indica hybrid rice. Biologia 66(6):1074–1081

    Article  CAS  Google Scholar 

  82. Mohammadi PP, Moini A, Ebrahimi A, Javidfar F (2012) Doubled haploid plants following colchicine treatment of microspore-derived embryos of oilseed rape (Brassica napus L.). Plant Cell Tissue Organ Cult 108:251–256

    Article  CAS  Google Scholar 

  83. Yemets AI, Blume YB (2008) Progress in plant polyploidization based on antimicrotubular drugs. Open Hortic J 1(1):15–20

    Article  CAS  Google Scholar 

  84. Sood S, Dhawan R, Singh K, Bains NS (2003) Development of novel chromosome doubling strategies for wheat × maize system of wheat haploid production. Plant Breed 122(6):493–496

    Article  Google Scholar 

  85. Pan-pan H, Wei-xu L, Hui-hui L (2018) In vitro induction and identification of autotetraploid of Bletilla striata (Thunb.) Reichb. f. by colchicine treatment. Plant Cell Tissue Organ Cult 132(3):425–432

    Article  CAS  Google Scholar 

  86. Ochatt SJ, Patat-Ochatt EM, Moessner A (2011) Ploidy level determination within the context of in vitro breeding. Plant Cell Tissue Organ Cult 104(3):329–341

    Article  Google Scholar 

  87. Dwivedi SL, Britt AB, Tripathi L, Sharma S, Upadhyaya HD, Ortiz R (2015) Haploids: constraints and opportunities in plant breeding. Biotechnol Adv 33(6):812–829

    Article  PubMed  Google Scholar 

  88. Niazian M, Sadat-Noori SA, Abdipour M, Tohidfar M, Mortazavian SMM (2018) Image processing and artificial neural network-based models to measure and predict physical properties of embryogenic callus and number of somatic embryos in ajowan (Trachyspermum ammi (L.) Sprague). In Vitro Cell Dev Biol Plant 54(1):54–68

    Article  Google Scholar 

  89. Niazian M, Shariatpanahi ME, Abdipour M, Oroojloo M (2019) Modeling callus induction and regeneration in an anther culture of tomato (Lycopersicon esculentum L.) using image processing and artificial neural network method. Protoplasma 256(5):1317–1332

    Article  CAS  PubMed  Google Scholar 

  90. Wang H, Dong B, Jiang J, Fang W, Guan Z, Liao Y, Chen S, Chen F (2014) Characterization of in vitro haploid and doubled haploid Chrysanthemum morifolium plants via unfertilized ovule culture for phenotypical traits and DNA methylation pattern. Front Plant Sci 5:738

    Article  PubMed  PubMed Central  Google Scholar 

  91. Vanous K, Vanous A, Frei UK, Lübberstedt T (2017) Generation of maize (Zea mays) doubled haploids via traditional methods. Curr Protoc Plant Biol 2(2):147–157

    Article  Google Scholar 

  92. Warchoł M, Skrzypek E, Nowakowska A, Marcińska I, Czyczyło-Mysza I, Dziurka K, Juzoń K, Cyganek K (2016) The effect of auxin and genotype on the production of Avena sativa L. doubled haploid lines. Plant Growth Regul 78(2):155–165

    Article  CAS  Google Scholar 

  93. Marcińska I, Nowakowska A, Skrzypek E, Czyczyło-Mysza I (2013) Production of double haploids in oat (Avena sativa L.) by pollination with maize (Zea mays L.). Open Life Sci 8(3):306–313

    Article  CAS  Google Scholar 

  94. Warchoł M, Czyczyło-Mysza I, Marcińska I, Dziurka K, Noga A, Skrzypek E (2018) The effect of genotype, media composition, pH and sugar concentrations on oat (Avena sativa L.) doubled haploid production through oat× maize crosses. Acta Physiol Plant 40(5):93

    Article  CAS  Google Scholar 

  95. Dunwell JM, Wilkinson MJ, Nelson S, Wening S, Sitorus AC, Mienanti D, Alfiko Y, Croxford AE, Ford CS, Forster BP, Caligari PD (2010) Production of haploids and doubled haploids in oil palm. BMC Plant Biol 10(1):218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Arzani A, Darvey NL (2001) The effect of colchicine on triticale anther-derived plants: microspore pre-treatment and haploid-plant treatment using a hydroponic recovery system. Euphytica 122(2):235–241

    Article  CAS  Google Scholar 

  97. Ślusarkiewicz-Jarzina A, Pudelska H, Woźna J, Pniewski T (2017) Improved production of doubled haploids of winter and spring triticale hybrids via combination of colchicine treatments on anthers and regenerated plants. J Appl Genet 58(3):287–295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Tayeng T, Chaudhary HK, Kishore N (2012) Enhancing doubled haploid production efficiency in wheat (Triticum aestivum L. em. Thell) by in vivo colchicine manipulations in Imperata cylindrica-mediated chromosome elimination approach. Plant Breed 131(5):574–578

    Article  CAS  Google Scholar 

  99. Srivastava P, Gill RS, Sharma A, Kumar S, Raghupati N, Mahal GS, Bains NS (2012) Colchicine administered as post pollination tiller injection is deleterious for doubled haploid production in durum wheat x maize crosses. Crop Improv 39(1):60–64

    Google Scholar 

  100. Srivastava P, Bains NS (2018) Accelerated wheat breeding: doubled haploids and rapid generation advance. In: Gosal S, Wani S (eds) Biotechnologies of crop improvement, volume 1. Springer, Cham

    Google Scholar 

  101. Foschi ML, Martinez LE, Ponce MT, Galmarini CR, Bohanec B (2013) Effect of colchicine and amiprophos-methyl on the production of in vitro doubled haploid onion plants and correlation assessment between ploidy level and stomatal size. Rev FCA UNCUYO 45(2):155–164

    Google Scholar 

  102. Alan AR, Lim W, Mutschler MA, Earle ED (2007) Complementary strategies for ploidy manipulations in gynogenic onion (Allium cepa L.). Plant Sci 173:25–31

    Article  CAS  Google Scholar 

  103. Ferrie AMR, Irmen KI, Beattie AD, Rossnagel BG (2014) Isolated microspore culture of oat (Avena sativa L.) for the production of doubled haploids: effect of pre-culture and post-culture conditions. Plant Cell Tissue Organ Cult 116(1):89–96

    Article  CAS  Google Scholar 

  104. Bossoutrot D, Hosemans D (1985) Gynogenesis in Beta vulgaris L.: from in vitro culture of unpollinated ovules to the production of doubled haploid plants in soil. Plant Cell Rep 4:300–303

    Article  CAS  PubMed  Google Scholar 

  105. Lionneton E, Beuret W, Delaitre V, Ochatt S, Rancillac M (2001) Improved microspore culture and doubled-haploid plant regeneration in the brown condiment mustard (Brassica juncea). Plant Cell Rep 20:126–130

    Article  CAS  PubMed  Google Scholar 

  106. Klutschewski S (2012) Methodical improvements in microspore culture of Brassica napus L. Dissertation. University of Gottingen, Gottingen

    Google Scholar 

  107. Bhatia R, Dey SS, Sood S, Sharma K, Parkash C, Kumar R (2017) Efficient microspore embryogenesis in cauliflower (Brassica oleracea var. botrytis L.) for development of plants with different ploidy level and their use in breeding programme. Sci Hortic 216:83–92

    Article  Google Scholar 

  108. Herrera JC, Moreno LG, Acuna JR, De Pena M, Osorio D (2002) Colchicine-induced microspore embryogenesis in coffee. Plant Cell Tissue Organ Cult 71(1):89–92

    Article  CAS  Google Scholar 

  109. Lotfi M, Alan AR, Henning MJ, Jahn MM, Earle ED (2003) Production of haploid and doubled haploid plants of melon (Cucumis melo L.) for use in breeding for multiple virus resistance. Plant Cell Rep 21:1121–1128

    Article  CAS  PubMed  Google Scholar 

  110. Burun B, Emiroglu U (2008) A comparative study on colchicine application methods in obtaining doubled haploids of tobacco (Nicotiana tabacum L.). Turk J Biol 32(2):105–111

    CAS  Google Scholar 

  111. Islam SMS (2010) The effect of colchicine pretreatment on isolated microspore culture of wheat (Triticum aestivum L.). Austr J Crop Sci 4(9):660–665

    CAS  Google Scholar 

  112. Würschum T, Tucker MR, Reif JC, Maurer HP (2012) Improved efficiency of doubled haploid generation in hexaploid triticale by in vitro chromosome doubling. BMC Plant Biol 12(109):1–7

    Google Scholar 

  113. Obert B, Barnabas B (2004) Colchicine induced embryogenesis in maize. Plant Cell Tissue Organ Cult 77(3):283–285

    Article  CAS  Google Scholar 

  114. Ren X, Ci J, Cui X, Yang W (2018) Doubling effect of anti-microtubule herbicides on the maize haploid. Emirates J Food Agric 30(10):903–908

    Article  Google Scholar 

  115. Grzebelus E, Adamus A (2004) Effect of anti-mitotic agents on development and genome doubling of gynogenic onion (Allium cepa L.) embryos. Plant Sci 167:569–574

    Article  CAS  Google Scholar 

  116. Fayos O, Valles MP, Graces-Claver A, Moller C, Castillo AM (2015) Doubled haploid production from Spanish onion (Allium cepa L.) germplasm: embryogenesis induction, plant regeneration and chromosome doubling. Front Plant Sci 6:384

    Article  PubMed  PubMed Central  Google Scholar 

  117. Hansen AL, Gertz A, Joersbo M, Andersen SB (2000) Chromosome doubling in vitro with amiprophos-methyl in Beta vulgaris ovule culture. Acta Agric Scand Sect B Soil Plant Sci 50:89–95

    CAS  Google Scholar 

  118. Hansen NJP, Andersen SB (1998) Efficient production of doubled haploid wheat plants by in vitro treatment of microspores with trifluralin or APM. Plant Breed 117:401–405

    Article  CAS  Google Scholar 

  119. Wan Y, Duncan DR, Rayburn AL, Petolino JF, Widholm JM (1991) The use of anti-microtubule herbicides for the production of doubled haploid plants from anther-derived maize callus. Theor Appl Genet 81(2):205–211

    Article  CAS  PubMed  Google Scholar 

  120. Soriano M, Cistué L, Castillo AM (2008) Enhanced induction of microspore embryogenesis after n-butanol treatment in wheat (Triticum aestivum L.) anther culture. Plant Cell Rep 27(5):805–811

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran E. Shariatpanahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shariatpanahi, M.E., Niazian, M., Ahmadi, B. (2021). Methods for Chromosome Doubling. In: Segui-Simarro, J.M. (eds) Doubled Haploid Technology. Methods in Molecular Biology, vol 2287. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1315-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1315-3_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1314-6

  • Online ISBN: 978-1-0716-1315-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics