Skip to main content

Global DNA Methylation Analysis Using Methylcytosine Dioxygenase

  • Protocol
  • First Online:
DNA Modification Detection Methods

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Because the alteration of global DNA methylation levels is detected in various cancer cells, the global DNA methylation level is expected as a biomarker for cancer diagnostics. Bisulfite-based assays have been widely used as a traditional method for the quantification of global DNA methylation levels. High-performance liquid chromatography (HPLC)-based assay and enzyme-linked immunosorbent assay (ELISA) have also been used; however, these methods require time-consuming DNA treatments, such as bisulfite treatment, digestion, or immobilization of genomic DNA before analysis. To analyze global DNA methylation levels in simple steps, an enzymatic assay using Ten-eleven translocation (TET), which oxidizes 5-methylcytosine (5mC) on genomic DNA, was developed. Succinate is produced during 5mC oxidation; thus, the amount of succinate produced by TET-mediated oxidation is correlated with the global DNA methylation level of genomic DNA. In this chapter, we describe the details of the expression of TET in Escherichia coli and the measurement of the amount of succinate produced from the TET-mediated reaction. The TET-based assay detects global DNA methylation levels in at least 100 ng genomic DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cash HL, Tao L, Yuan JM et al (2012) LINE-1 hypomethylation is associated with bladder cancer risk among non-smoking Chinese. Int J Cancer 130:1151–1159

    Article  CAS  PubMed  Google Scholar 

  2. Varriale A (2014) DNA methylation, epigenetics, and evolution in vertebrates: facts and challenges. Int J Evol Biol 2014:475981

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070

    Article  CAS  PubMed  Google Scholar 

  4. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  CAS  PubMed  Google Scholar 

  5. Brueckner B, Boy RG, Siedlecki P et al (2005) Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 65:6305–6311

    Article  CAS  PubMed  Google Scholar 

  6. Bostick M, Kim JK, Estève PO et al (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317:1760–1764

    Article  CAS  PubMed  Google Scholar 

  7. Sharif J, Muto M, Takebayashi S et al (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450:908–912

    Article  CAS  PubMed  Google Scholar 

  8. Fang J, Cheng J, Wang J et al (2016) Hemi-methylated DNA opens a closed conformation of UHRF1 to facilitate its histone recognition. Nat Commun 7:11197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tahiliani M, Koh KP, Shen Y et al (2011) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  CAS  Google Scholar 

  10. Ito S, Shen L, Wu SC et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iyer LM, Tahiliani M, Rao A et al (2009) Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8:1698–1710

    Article  CAS  PubMed  Google Scholar 

  12. Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu X, Zhao BS, He C (2015) TET family proteins: oxidation activity, interacting molecules, and functions in diseases. Chem Rev 115:2225–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. An J, Rao A, Ko M (2017) TET family dioxygenases and DNA demethylation in stem cells and cancers. Exp Mol Med 49:e323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Long HK, Blackledge NP, Klose RJ (2013) ZF-CxxC domain-containing proteins, CpG islands and the chromatin connection. Biochem Soc Trans 41:727–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ko M, An J, Bandukwala HS et al (2013) Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature 497:122–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuiper C, Vissers MCM (2014) Ascorbate as a co-factor for Fe- and 2-oxoglutarate dependent dioxygenases: physiological activity in tumor growth and progression. Front Oncol 4:359

    PubMed  PubMed Central  Google Scholar 

  18. Young JI, Zuchner S, Wang G (2015) Regulation of the epigenome by vitamin C. Annu Rev Nutr 35:545–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blaschke K, Ebata KT, Karimi MM et al (2013) Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500:222–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yin R, Mao SQ, Zhao B et al (2013) Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J Am Chem Soc 135:10396–10403

    Article  CAS  PubMed  Google Scholar 

  21. Xu Y, Liu SY, Li J et al (2018) Real-time sensing of TET2-mediated DNA demethylation in vitro by metal-organic framework-based oxygen sensor for mechanism analysis and stem-cell behavior prediction. Anal Chem 90:9330–9337

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez J, Frigola J, Vendrell E et al (2006) Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res 66:8462–9468

    Article  CAS  PubMed  Google Scholar 

  23. Tan AC, Jimeno A, Lin SH et al (2009) Characterizing DNA methylation patterns in pancreatic cancer genome. Mol Oncol 3:425–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barchitta M, Quattrocchi A, Maugeri A et al (2014) LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: a systematic review and meta-analysis. PLoS One 9:e109478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chen RZ, Pettersson U, Beardet C et al (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395:89–93

    Article  CAS  PubMed  Google Scholar 

  26. Chalitchagorn K, Shuangshoti S, Hourpai N et al (2004) Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene 23:8841–8846

    Article  CAS  PubMed  Google Scholar 

  27. Ai S, Shen L, Guo J et al (2012) DNA methylation as a biomarker for neuropsychiatric diseases. Int J Neurosci 122:165–176

    Article  CAS  PubMed  Google Scholar 

  28. Rao JS, Keleshian VL, Klein S et al (2012) Epigenetic modifications in frontal cortex from Alzheimer’s disease and bipolar disorder patients. Transl Psychiatry 2:e132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Coppieters N, Dieriks BV, Lill C et al (2014) Global changes in DNA methylation and hydroxymethylation in Alzheimer’s disease human brain. Neurobiol Aging 35:1334–1344

    Article  CAS  PubMed  Google Scholar 

  30. Sherwani SI, Khan HA (2015) Role of 5-hydroxymethylcytosine in neurodegeneration. Gene 570:17–24

    Article  CAS  PubMed  Google Scholar 

  31. Masliah E, Dumaop W, Galasko D et al (2013) Distinctive patterns of DNA methylation associated with Parkinson disease: identification of concordant epigenetic changes in brain and peripheral blood leukocytes. Epigenetics 8:1030–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Castillo S, Muñoz P, Behrens MI et al (2017) On the role of mining exposure in epigenetic effects in Parkinson’s disease. Neurotox Res 32:172–174

    Article  CAS  PubMed  Google Scholar 

  33. Xiong Z, Laird PW (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25:2532–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang AS, Estécio MRH, Doshi K et al (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32:e38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Baba Y, Huttenhower C, Nosho K et al (2010) Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol Cancer 9:125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kim JS, Chung WC, Lee KM et al (2012) Association between genetic instability and Helicobacter pylori infection in gastric epithelial dysplasia. Gastroenterol Res Pract 2012:360929

    PubMed  PubMed Central  Google Scholar 

  37. Armstrong KM, Bermingham EN, Bassett SA et al (2011) Global DNA methylation measurement by HPLC using low amounts of DNA. Biotechnol J 6:113–117

    Article  CAS  PubMed  Google Scholar 

  38. Kremer D, Metzger S, Kolb-Bachofen V et al (2012) Quantitative measurement of genome-wide DNA methylation by a reliable and cost-efficient enzyme-linked immunosorbent assay technique. Anal Biochem 422:74–78

    Article  CAS  PubMed  Google Scholar 

  39. Balaghi M, Wagner C (1993) DNA methylation in folate deficiency: use of CpG methylase. Biochem Biophys Res Commun 193:1184–1190

    Article  CAS  PubMed  Google Scholar 

  40. Rampersaud GC, Kauwell GP, Hutson AD et al (2000) Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr 72:998–1003

    Article  CAS  PubMed  Google Scholar 

  41. Pilsner JR, Liu X, Ahsan H et al (2007) Genomic methylation of peripheral blood leukocyte DNA: influences of arsenic and folate in Bangladeshi adults. Am J Clin Nutr 86:1179–1186

    Article  CAS  PubMed  Google Scholar 

  42. Yoshida W, Baba Y, Karube I (2016) Global DNA methylation detection system using MBD-fused luciferase based on bioluminescence resonance energy transfer assay. Anal Chem 88:9264–9268

    Article  CAS  PubMed  Google Scholar 

  43. Baba Y, Karube I, Yoshida W (2019) Global DNA methylation level monitoring by methyl-CpG binding domain-fused luciferase. Anal Lett 52:754–760

    Article  CAS  Google Scholar 

  44. Yoshida W, Baba Y, Banzawa K et al (2017) A quantitative homogeneous assay for global DNA methylation levels using CpG-binding domain- and methyl-CpG-binding domain-fused luciferase. Anal Chim Acta 990:168–173

    Article  CAS  PubMed  Google Scholar 

  45. Taka N, Karube I, Yoshida W (2019) Direct detection of hemi-methylated DNA by SRA-fused luciferase based on bioluminescence resonance energy transfer. Anal Lett 52:1258–1267

    Article  CAS  Google Scholar 

  46. Baba Y, Yamamoto K, Yoshida W (2019) Multicolor bioluminescence resonance energy transfer assay for quantification of global DNA methylation. Anal Bioanal Chem 411:4765–4773

    Article  CAS  PubMed  Google Scholar 

  47. Taka N, Yoshida W (2020) Quantification of global DNA methylation level using 5-methylcytosine dioxygenase. Anal Bioanal Chem 412:5299–5305

    Article  CAS  PubMed  Google Scholar 

  48. Rasmussen KD, Helin K (2016) Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev 30:733–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hu L, Li Z, Cheng J et al (2013) Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell 155:1545–1555

    Article  CAS  PubMed  Google Scholar 

  50. Hu L, Lu J, Cheng J et al (2015) Structural insight into substrate preference for TET-mediated oxidation. Nature 527:118–122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Precise Measurement Technology Promotion Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Taka, N., Yoshida, W. (2022). Global DNA Methylation Analysis Using Methylcytosine Dioxygenase. In: Yuan, BF. (eds) DNA Modification Detection Methods . Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1229-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1229-3_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1228-6

  • Online ISBN: 978-1-0716-1229-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics