Skip to main content

Drug Self-Administration as a Model to Study the Reward System

  • Protocol
  • First Online:
The Brain Reward System

Abstract

Laboratory animals voluntarily self-administer almost all drugs of abuse humans do. Laboratory animals also develop patterns of drug-taking and seeking that are relevant to addiction. This makes drug self-administration models powerful tools to study drug-induced changes in neurobiological, psychological, and behavioral functions that are thought to contribute to the transition to addiction. We describe here the basic procedures used in drug self-administration studies carried out in laboratory animals. Mice, rats, cats, dogs, and primates used in the laboratory can self-administer drugs of abuse, but we describe methods appropriate for female and male rats, as we have long-standing expertise in carrying out such studies. Drug self-administration studies can also use the oral, inhaled, or intravenous routes to deliver drugs, but here we focus on the intravenous route, as it is the most commonly used. Thus, we describe procedures for intravenous catheter construction, catheter implantation into the jugular vein, and catheter maintenance to promote catheter patency over the course of a typical drug self-administration study. We also describe the hardware and software needed to carry out such studies. We also include visual illustrations as support for these descriptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Spragg SDS (1940) Morphine addiction in chimpanzees. Comp Psychol Monogr 15:1–132

    Google Scholar 

  2. Spanagel R (2017) Animal models of addiction. Dialogues Clin Neurosci 19(3):247–258

    Article  PubMed  PubMed Central  Google Scholar 

  3. Olmstead MC (2006) Animal models of drug addiction: where do we go from here? Q J Exp Psychol (Hove) 59(4):625–653. https://doi.org/10.1080/17470210500356308

    Article  Google Scholar 

  4. Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94(4):469–492

    Article  CAS  PubMed  Google Scholar 

  5. Volkow ND, Fowler JS, Wang GJ (2004) The addicted human brain viewed in the light of imaging studies: brain circuits and treatment strategies. Neuropharmacology 47(Suppl 1):3–13. https://doi.org/10.1016/j.neuropharm.2004.07.019

    Article  CAS  PubMed  Google Scholar 

  6. Negus SS, Henningfield J (2015) Agonist medications for the treatment of cocaine use disorder. Neuropsychopharmacology 40(8):1815–1825. https://doi.org/10.1038/npp.2014.322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47(6):419–427. https://doi.org/10.1037/h0058775

    Article  CAS  PubMed  Google Scholar 

  8. Weeks JR (1962) Experimental morphine addiction: method for automatic intravenous injections in unrestrained rats. Science 138(3537):143–144

    Article  CAS  PubMed  Google Scholar 

  9. Olds J (1956) Pleasure centers in the brain. Sci Am 195:105–116

    Article  Google Scholar 

  10. Davis WM, Nichols JR (1963) A technique for self-injection of drugs in the study of reinforcement. J Exp Anal Behav 6:233–235. https://doi.org/10.1901/jeab.1963.6-233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Headlee CP, Coppock HW, Hichols JR (1955) Apparatus and technique involved in a laboratory method of detecting the addictiveness of drugs. J Am Pharm Assoc Am Pharm Assoc 44(4):229–231

    Article  CAS  PubMed  Google Scholar 

  12. Bozarth MA, Wise RA (1981) Intracranial self-administration of morphine into the ventral tegmental area in rats. Life Sci 28(5):551–555. https://doi.org/10.1016/0024-3205(81)90148-x

    Article  CAS  PubMed  Google Scholar 

  13. Phillips AG, Mora F, Rolls ET (1981) Intracerebral self-administration of amphetamine by rhesus monkeys. Neurosci Lett 24(1):81–86. https://doi.org/10.1016/0304-3940(81)90363-3

    Article  CAS  PubMed  Google Scholar 

  14. Goeders NE, Smith JE (1993) Intracranial cocaine self-administration into the medial prefrontal cortex increases dopamine turnover in the nucleus accumbens. J Pharmacol Exp Ther 265(2):592–600

    CAS  PubMed  Google Scholar 

  15. Jarvik ME (1967) Tobacco smoking in monkeys. Ann NY Acad Sci 142:280–294

    Article  Google Scholar 

  16. Carroll ME et al (1990) Cocaine-base smoking in rhesus monkeys: reinforcing and physiological effects. Psychopharmacology 102(4):443–450. https://doi.org/10.1007/bf02247123

    Article  CAS  PubMed  Google Scholar 

  17. Myers RD, Carey R (1961) Preference factors in experimental alcoholism. Science 134(3477):469–470

    Article  CAS  PubMed  Google Scholar 

  18. Grant KA, Samson HH (1985) Oral self administration of ethanol in free feeding rats. Alcohol 2(2):317–321

    Article  CAS  PubMed  Google Scholar 

  19. Bell SM et al (1993) Water deprivation-induced oral self-administration of cocaine in the Lewis rat: evidence for locomotor effects but not reinforcement. Pharmacol Biochem Behav 45(3):749–754

    Article  CAS  PubMed  Google Scholar 

  20. Bell SM et al (1995) The failure of cocaine to serve as an orally self-administered reinforcer in Lewis rats. Behav Pharmacol 6(4):366–374

    Article  CAS  PubMed  Google Scholar 

  21. Meisch RA (2001) Oral drug self-administration: an overview of laboratory animal studies. Alcohol 24(2):117–128

    Article  CAS  PubMed  Google Scholar 

  22. Gibaldi M, Levy G (1976) Pharmacokinetics in clinical practice I. Concepts. JAMA 235(17):1864–1867

    Article  CAS  PubMed  Google Scholar 

  23. Jenkins AJ, Cone EJ (1998) Pharmacokinetics: drug absorption, distribution, and elimination. In: Karch SB (ed) Drug abuse handbook. CRC Press LLC., pp 165–215

    Google Scholar 

  24. Schuster CR, Thompson T (1969) Self administration of and behavioral dependence on drugs. Annu Rev Pharmacol 9:483–502. https://doi.org/10.1146/annurev.pa.09.040169.002411

    Article  CAS  PubMed  Google Scholar 

  25. Cabeza de Vaca S, Carr KD (1998) Food restriction enhances the central rewarding effect of abused drugs. J Neurosci 18(18):7502–7510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Algallal H et al (2019) Sex differences in cocaine self-administration behaviour under long access versus intermittent access conditions. Addict Biol. https://doi.org/10.1111/adb.12809

  27. Bongiovanni M, See RE (2008) A comparison of the effects of different operant training experiences and dietary restriction on the reinstatement of cocaine-seeking in rats. Pharmacol Biochem Behav 89(2):227–233. https://doi.org/10.1016/j.pbb.2007.12.019

    Article  CAS  PubMed  Google Scholar 

  28. Ferrario CR et al (2005) Neural and behavioral plasticity associated with the transition from controlled to escalated cocaine use. Biol Psychiatry 58(9):751–759. https://doi.org/10.1016/j.biopsych.2005.04.046

    Article  CAS  PubMed  Google Scholar 

  29. Figueroa-Guzman Y et al (2011) Oral administration of levo-tetrahydropalmatine attenuates reinstatement of extinguished cocaine seeking by cocaine, stress or drug-associated cues in rats. Drug Alcohol Depend 116(1–3):72–79. https://doi.org/10.1016/j.drugalcdep.2010.11.023

    Article  CAS  PubMed  Google Scholar 

  30. McFarland K, Lapish CC, Kalivas PW (2003) Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 23(8):3531–3537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rowland NE (2007) Food or fluid restriction in common laboratory animals: balancing welfare considerations with scientific inquiry. Comp Med 57(2):149–160

    CAS  PubMed  Google Scholar 

  32. Davis JD (1966) A method for chronic intravenous infusion in freely moving rats. J Exp Anal Behav 9(4):385–387. https://doi.org/10.1901/jeab.1966.9-385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weeks JR, Davis JD (1964) Chronic Intravenous Cannulas for Rats. J Appl Physiol 19:540–541

    Article  CAS  PubMed  Google Scholar 

  34. Samaha AN, Minogianis EA, Nachar W (2011) Cues paired with either rapid or slower self-administered cocaine injections acquire similar conditioned rewarding properties. PLoS One 6(10):e26481. https://doi.org/10.1371/journal.pone.0026481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zimmer BA, Oleson EB, Roberts DC (2012) The motivation to self-administer is increased after a history of spiking brain levels of cocaine. Neuropsychopharmacology 37(8):1901–1910. https://doi.org/10.1038/npp.2012.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wakabayashi KT et al (2010) Rats markedly escalate their intake and show a persistent susceptibility to reinstatement only when cocaine is injected rapidly. J Neurosci 30(34):11346–11355. https://doi.org/10.1523/JNEUROSCI.2524-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Allain F et al (2017) Intermittent intake of rapid cocaine injections promotes robust psychomotor sensitization, increased incentive motivation for the drug and mGlu2/3 receptor dysregulation. Neuropharmacology 117:227–237. https://doi.org/10.1016/j.neuropharm.2017.01.026

    Article  CAS  PubMed  Google Scholar 

  38. Spealman RD, Goldberg SR (1978) Drug self-administration by laboratory animals: control by schedules of reinforcement. Annu Rev Pharmacol Toxicol 18:313–339. https://doi.org/10.1146/annurev.pa.18.040178.001525

    Article  CAS  PubMed  Google Scholar 

  39. Allain F et al (2015) How fast and how often: the pharmacokinetics of drug use are decisive in addiction. Neurosci Biobehav Rev 56:166–179. https://doi.org/10.1016/j.neubiorev.2015.06.012

    Article  PubMed  Google Scholar 

  40. Oleson EB, Roberts DC (2009) Behavioral economic assessment of price and cocaine consumption following self-administration histories that produce escalation of either final ratios or intake. Neuropsychopharmacology 34(3):796–804. https://doi.org/10.1038/npp.2008.195

    Article  PubMed  Google Scholar 

  41. Sizemore GM et al (1997) Dose-effect functions for cocaine self-administration: effects of schedule and dosing procedure. Pharmacol Biochem Behav 57(3):523–531

    Article  CAS  PubMed  Google Scholar 

  42. Arnold JM, Roberts DC (1997) A critique of fixed and progressive ratio schedules used to examine the neural substrates of drug reinforcement. Pharmacol Biochem Behav 57(3):441–447

    Article  CAS  PubMed  Google Scholar 

  43. French ED et al (1995) A comparison of the reinforcing efficacy of PCP, the PCP derivatives TCP and BTCP, and cocaine using a progressive ratio schedule in the rat. Behav Pharmacol 6(3):223–228

    Article  CAS  PubMed  Google Scholar 

  44. Hodos W (1961) Progressive ratio as a measure of reward strength. Science 134(3483):943–944

    Article  CAS  PubMed  Google Scholar 

  45. Richardson NR, Roberts DC (1996) Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods 66(1):1–11

    Article  CAS  PubMed  Google Scholar 

  46. Anthony JC, Warner LA, Kessler RC (1994) Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: basic findings from the national comorbidity survey. Exp Clin Psychopharmacol 2:244–268

    Article  Google Scholar 

  47. Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305(5686):1014–1017. https://doi.org/10.1126/science.1099020

    Article  CAS  PubMed  Google Scholar 

  48. Ahmed SH (2012) The science of making drug-addicted animals. Neuroscience 211:107–125. https://doi.org/10.1016/j.neuroscience.2011.08.014

    Article  CAS  PubMed  Google Scholar 

  49. APA (2013) DSM V Diagnostic and statistical manual of mental disorders. American Psychiatric Association

    Google Scholar 

  50. Kawa AB et al (2019) The transition to cocaine addiction: the importance of pharmacokinetics for preclinical models. Psychopharmacology 236(4). https://doi.org/10.1007/s00213-019-5164-0

  51. Roberts DC, Morgan D, Liu Y (2007) How to make a rat addicted to cocaine. Prog Neuro-Psychopharmacol Biol Psychiatry 31(8):1614–1624. https://doi.org/10.1016/j.pnpbp.2007.08.028

    Article  CAS  Google Scholar 

  52. Everitt BJ, Giuliano C, Belin D (2018) Addictive behaviour in experimental animals: prospects for translation. Philos Trans R Soc Lond Ser B Biol Sci 373(1742). https://doi.org/10.1098/rstb.2017.0027

  53. Lynch WJ (2018) Modeling the development of drug addiction in male and female animals. Pharmacol Biochem Behav 164:50–61. https://doi.org/10.1016/j.pbb.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  54. Mantsch JR et al (2001) Predictable individual differences in the initiation of cocaine self-administration by rats under extended-access conditions are dose-dependent. Psychopharmacology 157(1):31–39

    Article  CAS  PubMed  Google Scholar 

  55. Mantsch JR et al (2004) Effects of extended access to high versus low cocaine doses on self-administration, cocaine-induced reinstatement and brain mRNA levels in rats. Psychopharmacology 175(1):26–36. https://doi.org/10.1007/s00213-004-1778-x

    Article  CAS  PubMed  Google Scholar 

  56. Kitamura O et al (2006) Escalation of methamphetamine self-administration in rats: a dose-effect function. Psychopharmacology 186(1):48–53. https://doi.org/10.1007/s00213-006-0353-z

    Article  CAS  PubMed  Google Scholar 

  57. Ahmed SH, Koob GF (1998) Transition from moderate to excessive drug intake: change in hedonic set point. Science 282(5387):298–300

    Article  CAS  PubMed  Google Scholar 

  58. Ahmed SH, Koob GF (1999) Long-lasting increase in the set point for cocaine self-administration after escalation in rats. Psychopharmacology 146(3):303–312

    Article  CAS  PubMed  Google Scholar 

  59. Ahmed SH, Walker JR, Koob GF (2000) Persistent increase in the motivation to take heroin in rats with a history of drug escalation. Neuropsychopharmacology 22(4):413–421. https://doi.org/10.1016/S0893-133X(99)00133-5

    Article  CAS  PubMed  Google Scholar 

  60. Paterson NE, Markou A (2004) Prolonged nicotine dependence associated with extended access to nicotine self-administration in rats. Psychopharmacology 173(1–2):64–72. https://doi.org/10.1007/s00213-003-1692-7

    Article  CAS  PubMed  Google Scholar 

  61. Paterson NE, Markou A (2003) Increased motivation for self-administered cocaine after escalated cocaine intake. Neuroreport 14(17):2229–2232. https://doi.org/10.1097/01.wnr.0000091685.94870.ba

    Article  CAS  PubMed  Google Scholar 

  62. Allain F, Bouayad-Gervais K, Samaha AN (2018) High and escalating levels of cocaine intake are dissociable from subsequent incentive motivation for the drug in rats. Psychopharmacology 235(1):317–328. https://doi.org/10.1007/s00213-017-4773-8

    Article  CAS  PubMed  Google Scholar 

  63. Bouayad-Gervais K et al (2014) The self-administration of rapidly delivered cocaine promotes increased motivation to take the drug: contributions of prior levels of operant responding and cocaine intake. Psychopharmacology 231(21):4241–4252. https://doi.org/10.1007/s00213-014-3576-4

    Article  CAS  PubMed  Google Scholar 

  64. Beveridge TJR et al (2012) Analyzing human cocaine use patterns to inform animal addiction model development. Published abstract for the College on Problems of Drug Dependence Annual Meeting, Palm Springs, CA

    Google Scholar 

  65. Zimmer BA, Dobrin CV, Roberts DC (2011) Brain-cocaine concentrations determine the dose self-administered by rats on a novel behaviorally dependent dosing schedule. Neuropsychopharmacology 36(13):2741–2749. https://doi.org/10.1038/npp.2011.165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. James MH et al (2019) Increased number and activity of a lateral subpopulation of hypothalamic orexin/hypocretin neurons underlies the expression of an addicted state in rats. Biol Psychiatry 85(11):925–935. https://doi.org/10.1016/j.biopsych.2018.07.022

    Article  CAS  PubMed  Google Scholar 

  67. Kawa AB, Bentzley BS, Robinson TE (2016) Less is more: prolonged intermittent access cocaine self-administration produces incentive-sensitization and addiction-like behavior. Psychopharmacology 233(19–20):3587–3602. https://doi.org/10.1007/s00213-016-4393-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kawa AB, Valenta AC, Kennedy RT, Robinson TE (2019) Incentive and dopamine sensitization produced by intermittent but not long access cocaine self-administration. Eur J Neurosci. 50(4):2663–2682

    Google Scholar 

  69. Allain F, Samaha AN (2018) Revisiting long-access versus short-access cocaine self-administration in rats: intermittent intake promotes addiction symptoms independent of session length. Addict Biol 24(4):641–651. https://doi.org/10.1111/adb.12629

    Article  CAS  PubMed  Google Scholar 

  70. Calipari ES et al (2014) Intermittent cocaine self-administration produces sensitization of stimulant effects at the dopamine transporter. J Pharmacol Exp Ther 349(2):192–198. https://doi.org/10.1124/jpet.114.212993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Calipari ES et al (2013) Temporal pattern of cocaine intake determines tolerance vs sensitization of cocaine effects at the dopamine transporter. Neuropsychopharmacology 38(12):2385–2392. https://doi.org/10.1038/npp.2013.136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hatsukami DK, Fischman MW (1996) Crack cocaine and cocaine hydrochloride. Are the differences myth or reality? JAMA 276(19):1580–1588

    Article  CAS  PubMed  Google Scholar 

  73. Gueye AB, Allain F, Samaha AN (2019) Intermittent intake of rapid cocaine injections promotes the risk of relapse and increases mesocorticolimbic BDNF levels during abstinence. Neuropsychopharmacology 44(6):1027–1035. https://doi.org/10.1038/s41386-018-0249-8

    Article  CAS  PubMed  Google Scholar 

  74. Minogianis EA, Levesque D, Samaha AN (2013) The speed of cocaine delivery determines the subsequent motivation to self-administer the drug. Neuropsychopharmacology 38(13):2644–2656. https://doi.org/10.1038/npp.2013.173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Koob GF, Nestler EJ (1997) The neurobiology of drug addiction. J Neuropsychiatry Clin Neurosci 9(3):482–497. https://doi.org/10.1176/jnp.9.3.482

    Article  CAS  PubMed  Google Scholar 

  76. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18(3):247–291

    Article  CAS  PubMed  Google Scholar 

  77. Nicolaysen LC, Pan HT, Justice JB Jr (1988) Extracellular cocaine and dopamine concentrations are linearly related in rat striatum. Brain Res 456(2):317–323

    Article  CAS  PubMed  Google Scholar 

  78. Shou M et al (2006) Monitoring dopamine in vivo by microdialysis sampling and on-line CE-laser-induced fluorescence. Anal Chem 78(19):6717–6725. https://doi.org/10.1021/ac0608218

    Article  CAS  PubMed  Google Scholar 

  79. Minogianis EA et al (2018) Varying the rate of intravenous cocaine infusion influences the temporal dynamics of both drug and dopamine concentrations in the striatum. Eur J Neurosci, ePub: doi:https://doi.org/10.1111/ejn.13941

  80. Kalivas PW, Duffy P (1990) Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse 5(1):48–58. https://doi.org/10.1002/syn.890050104

    Article  CAS  PubMed  Google Scholar 

  81. Gerasimov MR et al (2000) Comparison between intraperitoneal and oral methylphenidate administration: a micradialysis and locomotor activity study. J Pharmacol Exp Ther 295(1):51–57

    CAS  PubMed  Google Scholar 

  82. Benwell ME, Balfour DJ (1992) The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. Br J Pharmacol 105(4):849–856. https://doi.org/10.1111/j.1476-5381.1992.tb09067.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pettit HO, Justice JB Jr (1989) Dopamine in the nucleus accumbens during cocaine self-administration as studied by in vivo microdialysis. Pharmacol Biochem Behav 34(4):899–904

    Article  CAS  PubMed  Google Scholar 

  84. Pettit HO, Justice JB Jr (1991) Effect of dose on cocaine self-administration behavior and dopamine levels in the nucleus accumbens. Brain Res 539(1):94–102

    Article  CAS  PubMed  Google Scholar 

  85. Phillips PE et al (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422(6932):614–618. https://doi.org/10.1038/nature01476

    Article  CAS  PubMed  Google Scholar 

  86. Martin-Garcia E et al (2014) Frequency of cocaine self-administration influences drug seeking in the rat: optogenetic evidence for a role of the prelimbic cortex. Neuropsychopharmacology 39(10):2317–2330. https://doi.org/10.1038/npp.2014.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nicola SM, Deadwyler SA (2000) Firing rate of nucleus accumbens neurons is dopamine-dependent and reflects the timing of cocaine-seeking behavior in rats on a progressive ratio schedule of reinforcement. J Neurosci 20(14):5526–5537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pan HT, Menacherry S, Justice JB Jr (1991) Differences in the pharmacokinetics of cocaine in naive and cocaine-experienced rats. J Neurochem 56(4):1299–1306

    Article  CAS  PubMed  Google Scholar 

  89. Samaha AN, Li Y, Robinson TE (2002) The rate of intravenous cocaine administration determines susceptibility to sensitization. J Neurosci 22(8):3244–3250. doi:20026273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wise RA et al (1995) Fluctuations in nucleus accumbens dopamine concentration during intravenous cocaine self-administration in rats. Psychopharmacology 120(1):10–20

    Article  CAS  PubMed  Google Scholar 

  91. Church WH, Justice JB Jr, Byrd LD (1987) Extracellular dopamine in rat striatum following uptake inhibition by cocaine, nomifensine and benztropine. Eur J Pharmacol 139(3):345–348

    Article  CAS  PubMed  Google Scholar 

  92. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85(14):5274–5278

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hurd YL, Kehr J, Ungerstedt U (1988) In vivo microdialysis as a technique to monitor drug transport: correlation of extracellular cocaine levels and dopamine overflow in the rat brain. J Neurochem 51(4):1314–1316

    Article  CAS  PubMed  Google Scholar 

  94. Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95(Suppl 2):S91–S117

    PubMed  Google Scholar 

  95. Hooks MS et al (1994) Behavioral and neurochemical sensitization following cocaine self-administration. Psychopharmacology 115(1–2):265–272

    Article  CAS  PubMed  Google Scholar 

  96. Phillips AG, Di Ciano P (1996) Behavioral sensitization is induced by intravenous self-administration of cocaine by rats. Psychopharmacology 124(3):279–281

    Article  CAS  PubMed  Google Scholar 

  97. Minogianis EA et al (2019) Role of the orbitofrontal cortex and the dorsal striatum in incentive motivation for cocaine. Behav Brain Res 372:112026. https://doi.org/10.1016/j.bbr.2019.112026

    Article  CAS  PubMed  Google Scholar 

  98. Calipari ES et al (2015) Brief intermittent cocaine self-administration and abstinence sensitizes cocaine effects on the dopamine transporter and increases drug seeking. Neuropsychopharmacology 40(3):728–735. https://doi.org/10.1038/npp.2014.238

    Article  CAS  PubMed  Google Scholar 

  99. UNODC (2017) United Nations Office on Drugs and Crime World Drug Report 2017

    Google Scholar 

  100. Goldstein A, Kalant H (1990) Drug policy: striking the right balance. Science 249(4976):1513–1521

    Article  CAS  PubMed  Google Scholar 

  101. Nutt D et al (2007) Development of a rational scale to assess the harm of drugs of potential misuse. Lancet 369(9566):1047–1053. https://doi.org/10.1016/S0140-6736(07)60464-4

    Article  PubMed  Google Scholar 

  102. Lynch WJ et al (2010) Animal models of substance abuse and addiction: implications for science, animal welfare, and society. Comp Med 60(3):177–188

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Florence Allain or Anne-Noël Samaha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Allain, F., Samaha, AN. (2021). Drug Self-Administration as a Model to Study the Reward System. In: Fakhoury, M. (eds) The Brain Reward System. Neuromethods, vol 165. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1146-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1146-3_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1145-6

  • Online ISBN: 978-1-0716-1146-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics