Skip to main content

Design and Application of a Short (16-mer) Locked Nucleic Acid Splice-Switching Oligonucleotide for Dystrophin Production in Duchenne Muscular Dystrophy Myotubes

  • Protocol
  • First Online:
RNA-Chromatin Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2161))

Abstract

Splice-switching oligonucleotides (SSOs) have been used to modulate gene expression by interfering with pre-mRNA splicing with the intent to treat disease. For Duchenne muscular dystrophy, splicing modulation has been used to induce the skipping of exon 51 of the dystrophin transcript, allowing the production of a truncated but functional protein. Although oligonucleotide-based therapies are promising, the rapid degradation of oligonucleotides (ONs) by intracellular nucleases has been a major obstacle. Locked nucleic acid (LNA) substitution in SSOs protects oligonucleotides from nuclease degradation and enhances the hybridization properties of the oligo. However, the best optimum size of the oligo depends on the LNA substitution rate. Here we show that 16-mer DNA SSOs with 60% LNA substitution and full phosphorothioate (PS) linkage backbone efficiently induce exon 51 skipping in myogenic cells derived from a DMD patient, allowing expression of the dystrophin protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yin W, Rogge M (2019) Targeting RNA: a transformative therapeutic strategy. Clin Transl Sci 12(2):98–112. https://doi.org/10.1111/cts.12624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aartsma-Rus A, Straub V, Hemmings R et al (2017) Development of exon skipping therapies for duchenne muscular dystrophy: a critical review and a perspective on the outstanding issues. Nucleic Acid Ther 27(5):251–259. https://doi.org/10.1089/nat.2017.0682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lindholm MW, Elmén J, Fisker N et al (2012) PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates. Mol Ther 20(2):376–381. https://doi.org/10.1038/mt.2011.260

    Article  CAS  PubMed  Google Scholar 

  4. Kaur H, Babu BR, Maiti S (2007) Perspectives on chemistry and therapeutic applications of locked nucleic acid (LNA). Chem Rev 107(11):4672–4697. https://doi.org/10.1021/cr050266u

    Article  CAS  PubMed  Google Scholar 

  5. Kurreck J, Wyszko E, Gillen C, Erdmann VA (2002) Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res 30(9):1911–1918. https://doi.org/10.1093/nar/30.9.1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lundin KE, Højland T, Hansen BR et al (2013) Biological activity and biotechnological aspects of locked nucleic acids. Adv Genet 82:47–107. https://doi.org/10.1016/B978-0-12-407676-1.00002-0

    Article  CAS  PubMed  Google Scholar 

  7. Petersen M, Nielsen CB, Nielsen KE et al (2000) The conformations of locked nucleic acids (LNA). J Mol Recognit 13(1):44–53. https://doi.org/10.1002/(SICI)1099-1352(200001/02)13:1<44::AID-JMR486>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  8. Gupta N, Fisker N, Asselin MC et al (2010) A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One 5(5):e10682. https://doi.org/10.1371/journal.pone.0010682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stein CA, Hansen JB, Lai J et al (2010) Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res 38(1):e3. https://doi.org/10.1093/nar/gkp841

    Article  CAS  PubMed  Google Scholar 

  10. Crinelli R, Bianchi M, Gentilini L, Magnani M (2002) Design and characterization of decoy oligonucleotides containing locked nucleic acids. Nucleic Acids Res 30(11):2435–2443. https://doi.org/10.1093/nar/30.11.2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pires VB, Simões R, Mamchaoui K, Carvalho C, Carmo-Fonseca M (2017) Short (16-mer) locked nucleic acid splice-switching oligonucleotides restore dystrophin production in Duchenne muscular dystrophy myotubes. PLoS One 12(7):e0181065. https://doi.org/10.1371/journal.pone.0181065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mamchaoui K, Trollet C, Bigot A et al (2011) Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skelet Muscle 1:34. https://doi.org/10.1186/2044-5040-1-34

    Article  PubMed  PubMed Central  Google Scholar 

  13. Obad S, dos Santos CO, Petri A et al (2011) Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet 43(4):371–380. https://doi.org/10.1038/ng.786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Obika S, Nanbu D, Hari Y et al (1997) Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C3, −endo sugar puckering. Tetrahedron Lett 38(50):8735–8738. https://doi.org/10.1016/S0040-4039(97)10322-7

    Article  CAS  Google Scholar 

  15. Singh SK, Nielsen P, Koshkin AA, Wengel J (1998) LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem Commun:455–456. https://doi.org/10.1039/A708608C

  16. Lundin KE, Højland T, Hansen BR et al (2013) Biological activity and biotechnological aspects of locked nucleic acids. Adv Genet 82:47–107. https://doi.org/10.1016/B978-0-12-407676-1.00002-0

    Article  CAS  PubMed  Google Scholar 

  17. Morita K, Takagi M, Hasegawa C et al (2003) Synthesis and properties of 2′-O,4′-C-ethylene-bridged nucleic acids (ENA) as effective antisense oligonucleotides. Bioorganic Med Chem 11(10):2211–2226. https://doi.org/10.1016/S0968-0896(03)00115-9

    Article  CAS  Google Scholar 

  18. Stein CA, Subasinghe C, Shinozuka K, Cohen JS (1988) Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 16(8):3209–3221. https://doi.org/10.1093/nar/16.8.3209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Elmén J, Lindow M, Schütz S et al (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452(7189):896–899. https://doi.org/10.1038/nature06783

    Article  CAS  PubMed  Google Scholar 

  20. Zhao Q, Matson S, Herrera CJ, Fisher E, Yu H, Krieg AM (1993) Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides. Antisense Res Dev 3(1):53–66. https://doi.org/10.1089/ard.1993.3.53

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the Association Française Contre les Myopathies and the Platform for the Immortalization of Human Cells and Collaboration, Institut de Myologie, Paris, for the immortalized human cell lines, and Capucine Trollet (Centre de Recherche en Myologie, Sorbonne Universités, Paris) for oligonucleotide AO51. We thank Ricardo Simões, Vanessa Borges Pires, and Kamel Mamchaoui for collaboration and Ana de Jesus and Ana Margarida Nascimento for technical support. We would like to thank Marcia Triunfol for assistance in preparing this manuscript and Noélia Custódio for critical review.

We further acknowledge funding from Fundação para a Ciência e Tecnologia and FEDER/POR Lisboa 2020—Programa Operacional Regional de Lisboa, PORTUGAL 2020 (LISBOA-01-0145-FEDER-016394; 007391).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Célia Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Carvalho, C., Carmo-Fonseca, M. (2020). Design and Application of a Short (16-mer) Locked Nucleic Acid Splice-Switching Oligonucleotide for Dystrophin Production in Duchenne Muscular Dystrophy Myotubes. In: Ørom, U. (eds) RNA-Chromatin Interactions. Methods in Molecular Biology, vol 2161. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0680-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0680-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0679-7

  • Online ISBN: 978-1-0716-0680-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics