Skip to main content

Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion

  • Protocol
  • First Online:
Exon Skipping and Inclusion Therapies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1828))

Abstract

Antisense-mediated exon skipping and exon inclusion have proven to be powerful tools for treating neuromuscular diseases. The approval of Exondys 51 (eteplirsen) and Spinraza (nusinersen) for the treatment of patients with Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) was the most noteworthy accomplishment in 2016. Exon skipping uses short DNA-like molecules called antisense oligonucleotides (AONs) to correct the disrupted reading frame, allowing the production of functional quasi-dystrophin proteins, and ameliorate the progression of the disease. Exon inclusion for SMA employs an AON targeting an intronic splice silencer site to include an exon which is otherwise spliced out. Recently, these strategies have also been explored in many other genetic disorders, including dysferlin-deficient muscular dystrophy (e.g., Miyoshi myopathy; MM, limb-girdle muscular dystrophy type 2B; LGMD2B, and distal myopathy with anterior tibial onset; DMAT), laminin α2 chain (merosin)-deficient congenital muscular dystrophy (MDC1A), sarcoglycanopathy (e.g., limb-girdle muscular dystrophy type 2C; LGMD2C), and Fukuyama congenital muscular dystrophy (FCMD). A major challenge in exon skipping and exon inclusion is the difficulty in designing effective AONs. The mechanism of mRNA splicing is highly complex, and the efficacy of AONs is often unpredictable. We will discuss the design of effective AONs for exon skipping and exon inclusion in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee JJ, Yokota T (2013) Antisense therapy in neurology. J Pers Med 3(3):144–176. https://doi.org/10.3390/jpm3030144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guncay A, Yokota T (2015) Antisense oligonucleotide drugs for Duchenne muscular dystrophy: how far have we come and what does the future hold? Future Med Chem 7(13):1631–1635. https://doi.org/10.4155/fmc.15.116

    Article  CAS  PubMed  Google Scholar 

  3. Vickers TA, Zhang H, Graham MJ et al (2006) Modification of MyD88 mRNA splicing and inhibition of IL-1beta signaling in cell culture and in mice with a 2'-O-methoxyethyl-modified oligonucleotide. J Immunol 176(6):3652–3661

    Article  CAS  PubMed  Google Scholar 

  4. (2016) Eteplirsen (Exondys 51) for Duchenne muscular dystrophy. Med Lett Drugs Ther 58 (1507):145–146

    Google Scholar 

  5. Shorrock HK, Gillingwater TH, Groen EJN. (2018) Overview of Current Drugs and Molecules in Development for Spinal Muscular Atrophy Therapy. Drugs 78(3):293–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakamura A, Fueki N, Shiba N et al (2016) Deletion of exons 3-9 encompassing a mutational hot spot in the DMD gene presents an asymptomatic phenotype, indicating a target region for multiexon skipping therapy. J Hum Genet 61(7):663–667. https://doi.org/10.1038/jhg.2016.28

    Article  CAS  PubMed  Google Scholar 

  7. Koenig M, Beggs AH, Moyer M et al (1989) The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 45(4):498–506

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakamura A, Shiba N, Miyazaki D et al (2017) Comparison of the phenotypes of patients harboring in-frame deletions starting at exon 45 in the Duchenne muscular dystrophy gene indicates potential for the development of exon skipping therapy. J Hum Genet 62(4):459–463. https://doi.org/10.1038/jhg.2016.152

    Article  CAS  PubMed  Google Scholar 

  9. Echigoya Y, Nakamura A, Nagata T et al (2017) Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 114(16):4213–4218. https://doi.org/10.1073/pnas.1613203114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shimo T, Tachibana K, Saito K et al (2014) Design and evaluation of locked nucleic acid-based splice-switching oligonucleotides in vitro. Nucleic Acids Res 42(12):8174–8187. https://doi.org/10.1093/nar/gku512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rodrigues M, Echigoya Y, Fukada S et al (2016) Current translational research and murine models for Duchenne muscular dystrophy. J Neuromuscul Dis 3(1):29–48

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yokota T, Duddy W, Echigoya Y et al (2012) Exon skipping for nonsense mutations in Duchenne muscular dystrophy: too many mutations, too few patients? Expert Opin Biol Ther 12(9):1141–1152. https://doi.org/10.1517/14712598.2012.693469

    Article  CAS  PubMed  Google Scholar 

  13. Wein N, Vulin A, Findlay AR et al (2017) Efficient skipping of single exon duplications in DMD patient-derived cell lines using an antisense oligonucleotide approach. J Neuromuscul Dis 4(3):199–207. https://doi.org/10.3233/JND-170233

    Article  PubMed  Google Scholar 

  14. Yu X, Bao B, Echigoya Y et al (2015) Dystrophin-deficient large animal models: translational research and exon skipping. Am J Transl Res 7(8):1314–1331

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Maruyama R, Echigoya Y, Caluseriu O et al (2017) Systemic delivery of morpholinos to skip multiple exons in a dog model of Duchenne muscular dystrophy. Methods Mol Biol 1565:201–213. https://doi.org/10.1007/978-1-4939-6817-6_17

    Article  CAS  PubMed  Google Scholar 

  16. Aartsma-Rus A, Fokkema I, Verschuuren J et al (2009) Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30(3):293–299. https://doi.org/10.1002/humu.20918

    Article  PubMed  Google Scholar 

  17. Echigoya Y, Aoki Y, Miskew B et al (2015) Long-term efficacy of systemic multiexon skipping targeting dystrophin exons 45-55 with a cocktail of vivo-morpholinos in mdx52 mice. Mol Ther Nucleic Acids 4:e225. https://doi.org/10.1038/mtna.2014.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goyenvalle A, Griffith G, Babbs A et al (2015) Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat Med 21(3):270–275. https://doi.org/10.1038/nm.3765

    Article  CAS  PubMed  Google Scholar 

  19. Takagi M, Yagi M, Ishibashi K et al (2004) Design of 2'-O-Me RNA/ENA chimera oligonucleotides to induce exon skipping in dystrophin pre-mRNA. Nucleic Acids Symp Ser (Oxf) 48:297–298. https://doi.org/10.1093/nass/48.1.297

    Article  Google Scholar 

  20. Miskew Nichols B, Aoki Y, Kuraoka M et al (2016) Multi-exon skipping using cocktail antisense oligonucleotides in the canine x-linked muscular dystrophy. J Vis Exp (111). doi: https://doi.org/10.3791/53776

  21. Yokota T, Lu QL, Partridge T et al (2009) Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol 65(6):667–676. https://doi.org/10.1002/ana.21627

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alter J, Lou F, Rabinowitz A et al (2006) Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 12(2):175–7 

    Article  CAS  PubMed  Google Scholar 

  23. Yokota T, Nakamura A, Nagata T et al (2012) Extensive and prolonged restoration of dystrophin expression with vivo-morpholino-mediated multiple exon skipping in dystrophic dogs. Nucleic Acid Ther 22(5):306–315. https://doi.org/10.1089/nat.2012.0368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maruyama R, Echigoya Y, Nakamura A et al (2017) Systemic injections of peptide-conjugated morpholinos improve cardiac symptoms of a dog model of Duchenne muscular dystrophy. Paper presented at the molecular therapy

    Google Scholar 

  25. Aoki Y, Nagata T, Yokota T et al (2013) Highly efficient in vivo delivery of PMO into regenerating myotubes and rescue in laminin-alpha2 chain-null congenital muscular dystrophy mice. Hum Mol Genet 22(24):4914–4928. https://doi.org/10.1093/hmg/ddt341

    Article  CAS  PubMed  Google Scholar 

  26. Wein N, Avril A, Bartoli M et al (2010) Efficient bypass of mutations in dysferlin deficient patient cells by antisense-induced exon skipping. Hum Mutat 31(2):136–142. https://doi.org/10.1002/humu.21160

    Article  CAS  PubMed  Google Scholar 

  27. Touznik A, Lee JJ, Yokota T (2014) New developments in exon skipping and splice modulation therapies for neuromuscular diseases. Expert Opin Biol Ther 14(6):809–819. https://doi.org/10.1517/14712598.2014.896335

    Article  CAS  PubMed  Google Scholar 

  28. Spraggon L, Cartegni L (2013) Antisense modulation of RNA processing as a therapeutic approach in cancer therapy. Drug Discov Today Ther Strateg 10(3):e139–e148. https://doi.org/10.1016/j.ddstr.2013.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zammarchi F, de Stanchina E, Bournazou E et al (2011) Antitumorigenic potential of STAT3 alternative splicing modulation. Proc Natl Acad Sci U S A 108(43):17779–17784. https://doi.org/10.1073/pnas.1108482108

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lentz JJ, Jodelka FM, Hinrich AJ et al (2013) Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness. Nat Med 19(3):345–350. https://doi.org/10.1038/nm.3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wojtkowiak-Szlachcic A, Taylor K, Stepniak-Konieczna E et al (2015) Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy. Nucleic Acids Res 43(6):3318–3331. https://doi.org/10.1093/nar/gkv163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao QQ, Wyatt E, Goldstein JA et al (2015) Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping. J Clin Invest 125(11):4186–4195. https://doi.org/10.1172/JCI82768

    Article  PubMed  PubMed Central  Google Scholar 

  33. Touznik A, Maruyama R, Hosoki K et al (2017) LNA/DNA mixmer-based antisense oligonucleotides correct alternative splicing of the SMN2 gene and restore SMN protein expression in type 1 SMA fibroblasts. Sci Rep 7(1):3672. https://doi.org/10.1038/s41598-017-03850-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Skordis LA, Dunckley MG, Yue B et al (2003) Bifunctional antisense oligonucleotides provide a trans-acting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts. Proc Natl Acad Sci U S A 100(7):4114–4119. https://doi.org/10.1073/pnas.0633863100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Madocsai C, Lim SR, Geib T et al (2005) Correction of SMN2 Pre-mRNA splicing by antisense U7 small nuclear RNAs. Mol Ther 12(6):1013–1022. https://doi.org/10.1016/j.ymthe.2005.08.022

    Article  CAS  PubMed  Google Scholar 

  36. Hua Y, Vickers TA, Baker BF et al (2007) Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol 5(4):e73

    Article  PubMed  PubMed Central  Google Scholar 

  37. Baughan TD, Dickson A, Osman EY et al (2009) Delivery of bifunctional RNAs that target an intronic repressor and increase SMN levels in an animal model of spinal muscular atrophy. Hum Mol Genet 18(9):1600–1611. https://doi.org/10.1093/hmg/ddp076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Williams JH, Schray RC, Patterson CA et al (2009) Oligonucleotide-mediated survival of motor neuron protein expression in CNS improves phenotype in a mouse model of spinal muscular atrophy. J Neurosci 29(24):7633–7638. https://doi.org/10.1523/JNEUROSCI.0950-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hua Y, Sahashi K, Hung G et al (2010) Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 24(15):1634–1644. https://doi.org/10.1101/gad.1941310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Passini MA, Bu J, Richards AM et al (2011) Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med 3(72):72ra18. https://doi.org/10.1126/scitranslmed.3001777

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mitrpant C, Porensky P, Zhou H et al (2013) Improved antisense oligonucleotide design to suppress aberrant SMN2 gene transcript processing: towards a treatment for spinal muscular atrophy. PLoS One 8(4):e62114. https://doi.org/10.1371/journal.pone.0062114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Taniguchi-Ikeda M, Kobayashi K, Kanagawa M et al (2011) Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy. Nature 478(7367):127–131. https://doi.org/10.1038/nature10456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee JJA, Yokota T (2016) Translational research in nucleic acid therapies for muscular dystrophies. In: Takeda S'i, Miyagoe-Suzuki Y, Mori-Yoshimura M (eds) Translational research in muscular dystrophy, 1st edn. Springer, Tokyo, pp 87–102. https://doi.org/10.1007/978-4-431-55678-7

    Chapter  Google Scholar 

  44. Dominov JA, Uyan O, Sapp PC et al (2014) A novel dysferlin mutant pseudoexon bypassed with antisense oligonucleotides. Ann Clin Transl Neurol 1(9):703–720. https://doi.org/10.1002/acn3.96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lim KR, Maruyama R, Yokota T (2017) Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther 11:533–545. https://doi.org/10.2147/DDDT.S97635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nguyen Q, Yokota T (2017) Immortalized muscle cell model to test the exon skipping efficacy for Duchenne muscular dystrophy. J Pers Med 7(4). https://doi.org/10.3390/jpm7040013

    Article  PubMed Central  Google Scholar 

  47. Summerton J, Weller D (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7(3):187–195

    Article  CAS  PubMed  Google Scholar 

  48. Lu QL, Rabinowitz A, Chen YC et al (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci U S A 102(1):198–203. https://doi.org/10.1073/pnas.0406700102

    Article  CAS  PubMed  Google Scholar 

  49. Chiriboga CA, Swoboda KJ, Darras BT et al (2016) Results from a phase 1 study of nusinersen (ISIS-SMNRx) in children with spinal muscular atrophy. Neurology 86(10):890–897. https://doi.org/10.1212/WNL.0000000000002445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Echigoya Y, Lim KRQ, Trieu N et al (2017) Quantitative antisense screening and optimization for exon 51 skipping in Duchenne muscular dystrophy. Mol Ther. https://doi.org/10.1016/j.ymthe.2017.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang CJ, Wang L, Wu Y et al (2007) Synthesis and investigation of deoxyribonucleic acid/locked nucleic acid chimeric molecular beacons. Nucleic Acids Res 35(12):4030–4041. https://doi.org/10.1093/nar/gkm358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Echigoya Y, Mouly V, Garcia L et al (2015) In silico screening based on predictive algorithms as a design tool for exon skipping oligonucleotides in Duchenne muscular dystrophy. PLoS One 10(3):e0120058. https://doi.org/10.1371/journal.pone.0120058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Aartsma-Rus A, van Vliet L, Hirschi M et al (2009) Guidelines for antisense oligonucleotide design and insight into splice-modulating mechanisms. Mol Ther 17(3):548–553. https://doi.org/10.1038/mt.2008.205

    Article  CAS  PubMed  Google Scholar 

  54. Yokota T, Takeda S, Lu QL et al (2009) A renaissance for antisense oligonucleotide drugs in neurology: exon skipping breaks new ground. Arch Neurol 66(1):32–38

    Article  PubMed  PubMed Central  Google Scholar 

  55. Saito T, Nakamura A, Aoki Y et al (2010) Antisense PMO found in dystrophic dog model was effective in cells from exon 7-deleted DMD patient. PLoS One 5(8):e12239. https://doi.org/10.1371/journal.pone.0012239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Echigoya Y, Yokota T (2014) Skipping multiple exons of dystrophin transcripts using cocktail antisense oligonucleotides. Nucleic Acid Ther 24(1):57–68. https://doi.org/10.1089/nat.2013.0451

    Article  CAS  PubMed  Google Scholar 

  57. Aoki Y, Yokota T, Wood MJ (2013) Development of multiexon skipping antisense oligonucleotide therapy for Duchenne muscular dystrophy. Biomed Res Int 2013:402369. https://doi.org/10.1155/2013/402369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aslesh T, Maruyama R, Yokota T (2018) Skipping multiple exons to treat DMD—promises and challenges. Biomedicine 6(1):1

    Google Scholar 

  59. Aoki Y, Yokota T, Nagata T et al (2012) Bodywide skipping of exons 45-55 in dystrophic mdx52 mice by systemic antisense delivery. Proc Natl Acad Sci U S A 109(34):13763–13768. https://doi.org/10.1073/pnas.1204638109

    Article  PubMed  PubMed Central  Google Scholar 

  60. Aartsma-Rus A, Van Deutekom JC, Fokkema IF et al (2006) Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 34(2):135–144

    Article  CAS  PubMed  Google Scholar 

  61. Desmet FO, Hamroun D, Lalande M et al (2009) Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37(9):e67. https://doi.org/10.1093/nar/gkp215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35(Web Server):W43–W46. https://doi.org/10.1093/nar/gkm234

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hubbard T, Barker D, Birney E et al (2002) The Ensembl genome database project. Nucleic Acids Res 30(1):38–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Speir ML, Zweig AS, Rosenbloom KR et al (2016) The UCSC Genome Browser database: 2016 update. Nucleic Acids Res 44(D1):D717–D725. https://doi.org/10.1093/nar/gkv1275

    Article  CAS  PubMed  Google Scholar 

  66. Yokota T, Pistilli E, Duddy W et al (2007) Potential of oligonucleotide-mediated exon-skipping therapy for Duchenne muscular dystrophy. Expert Opin Biol Ther 7(6):831–842. https://doi.org/10.1517/14712598.7.6.831

    Article  CAS  PubMed  Google Scholar 

  67. Yokota T, Duddy W, Partridge T (2007) Optimizing exon skipping therapies for DMD. Acta Myol 26(3):179–184

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cartegni L, Wang J, Zhu Z et al (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31(13):3568–3571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fairbrother WG, Yeo GW, Yeh R et al (2004) RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons. Nucleic Acids Res 32(Web Server):W187–W190. https://doi.org/10.1093/nar/gkh393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yokota T, Hoffman E, Takeda S (2011) Antisense oligo-mediated multiple exon skipping in a dog model of Duchenne muscular dystrophy. Methods Mol Biol 709:299–312. https://doi.org/10.1007/978-1-61737-982-6_20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Flanigan KM, Voit T, Rosales XQ et al (2014) Pharmacokinetics and safety of single doses of drisapersen in non-ambulant subjects with Duchenne muscular dystrophy: results of a double-blind randomized clinical trial. Neuromuscul Disord 24(1):16–24. https://doi.org/10.1016/j.nmd.2013.09.004

    Article  PubMed  Google Scholar 

  72. Voit T, Topaloglu H, Straub V et al (2014) Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, randomised, placebo-controlled phase 2 study. Lancet Neurol 13(10):987–996. https://doi.org/10.1016/S1474-4422(14)70195-4

    Article  CAS  PubMed  Google Scholar 

  73. Mendell JR, Rodino-Klapac LR, Sahenk Z et al (2013) Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol 74(5):637–647. https://doi.org/10.1002/ana.23982

    Article  CAS  PubMed  Google Scholar 

  74. Harding PL, Fall AM, Honeyman K et al (2007) The influence of antisense oligonucleotide length on dystrophin exon skipping. Mol Ther 15(1):157–166. https://doi.org/10.1038/sj.mt.6300006

    Article  CAS  PubMed  Google Scholar 

  75. Chan CY, Carmack CS, Long DD et al (2009) A structural interpretation of the effect of GC-content on efficiency of RNA interference. BMC Bioinformatics 10(Suppl 1):S33. https://doi.org/10.1186/1471-2105-10-S1-S33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kamola PJ, Kitson JD, Turner G et al (2015) In silico and in vitro evaluation of exonic and intronic off-target effects form a critical element of therapeutic ASO gapmer optimization. Nucleic Acids Res 43(18):8638–8650. https://doi.org/10.1093/nar/gkv857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kasuya T, Hori S, Watanabe A et al (2016) Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides. Sci Rep 6:30377. https://doi.org/10.1038/srep30377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tolstrup N, Nielsen PS, Kolberg JG et al (2003) OligoDesign: optimal design of LNA (locked nucleic acid) oligonucleotide capture probes for gene expression profiling. Nucleic Acids Res 31(13):3758–3762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Disterer P, Kryczka A, Liu Y et al (2014) Development of therapeutic splice-switching oligonucleotides. Hum Gene Ther 25(7):587–598. https://doi.org/10.1089/hum.2013.234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kibler-Herzog L, Zon G, Uznanski B et al (1991) Duplex stabilities of phosphorothioate, methylphosphonate, and RNA analogs of two DNA 14-mers. Nucleic Acids Res 19(11):2979–2986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by the Muscular Dystrophy Canada, the Friends of Garrett Cumming Research Fund, the HM Toupin Neurological Science Research Fund, the Canadian Institutes of Health Research (CIHR), the Alberta Innovates: Health Solutions (AIHS), the Canada Foundation for Innovation (CFI), the Alberta Advanced Education and Technology, and the Women and Children’s Health Research Institute (WCHRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Yokota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maruyama, R., Yokota, T. (2018). Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion. In: Yokota, T., Maruyama, R. (eds) Exon Skipping and Inclusion Therapies. Methods in Molecular Biology, vol 1828. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8651-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8651-4_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8650-7

  • Online ISBN: 978-1-4939-8651-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics