Skip to main content

In Vivo Epithelial Metabolic Imaging Using a Topical Fluorescent Glucose Analog

  • Protocol
  • First Online:
Cell Tracking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2126))

Abstract

The demanding metabolic needs of cancer cells are met by aerobic glycolysis. While whole-body PET imaging methods exist for evaluating this metabolic response, these are not ideal for local, more detailed regions such as mucosal surfaces. Fluorescence imaging of glucose analogs with similarities to radiolabeled deoxyglucose used in PET, namely, fluorescent 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-d-glucose (2-NBDG), offers such an alternative, particularly as this glucose analog may be delivered by local topical delivery. In this chapter, methods for in vivo epithelial imaging in a preclinical hamster model for oral cancer and oral epithelial dysplasia are described. Outlined are methods for preparation and in vivo delivery of 2-NBDG by topical application to the oral mucosa followed by fluorescence imaging to compare fluorescence responses between neoplasia and control mucosa or to monitor changes in fluorescence signal with time in both groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dang CV (2012) Links between metabolism and cancer. Genes Dev 26:877–890. https://doi.org/10.1101/gad.189365.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yuen CA, Asuthkar S, Guda MR, Tsung AJ, Velpula KK (2016) Cancer stem cell molecular reprogramming of the Warburg effect in glioblastomas: a new target gleaned from an old concept. CNS Oncol 5:101–108. https://doi.org/10.2217/cns-2015-0006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sai KKS, Zachar Z, Bingam PM, Mintz A (2017) Metabolic PET imaging in oncology. Am J Roentgenol 209:270–276

    Article  Google Scholar 

  4. Erdi YE (2012) Limits of tumor detectability in nuclear medicine and PET. Mol Imaging Radionucl Ther 21:23–28. https://doi.org/10.4274/Mirt.138

    Article  PubMed  PubMed Central  Google Scholar 

  5. TeSlaa T, Teitell MA (2014) Techniques to monitor glycolysis. Methods Enzymol 542:91–114. https://doi.org/10.1016/B978-0-12-416618-9.00005-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zou C, Wang Y, Shen Z (2005) 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J Biochem Biophys Methods 64(3):207–215

    Article  CAS  Google Scholar 

  7. Sheth RA, Josephson L, Mahmood U (2009) Evaluation and clinically relevant applications of a fluorescent imaging analog to fluorodeoxyglucose positron emission tomography. J Biomed Opt 14:064014. https://doi.org/10.1117/1.3259364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nitin N et al (2009) Molecular imaging of glucose uptake in oral neoplasia following topical application of fluorescently labeled deoxy-glucose. Int J Cancer 124:2634–2642. https://doi.org/10.1002/ijc.24222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pal R, Villarreal P, Qiu S, Vargas G (2018) In-vivo topical mucosal delivery of a fluorescent deoxy-glucose delineates neoplasia from normal in a preclinical model of oral epithelial neoplasia. Sci Rep 8:9760. https://www.nature.com/articles/s41598-018-28014-8#Ack1

    Article  Google Scholar 

  10. Silverman J (2012) Chapter 29—biomedical research techniques. In: Suckow MA, Stevens KA, Wilson RP (eds) The laboratory rabbit, Guinea pig, hamster, and other rodents. Academic Press, Boston, pp 779–795

    Chapter  Google Scholar 

  11. Gimenez-Conti I (1993) The hamster cheek pouch carcinogenesis model. Acta Odontol Latinoam 7:3–12

    CAS  PubMed  Google Scholar 

  12. Vairaktaris E et al (2008) The hamster model of sequential oral oncogenesis. Oral Oncol 44:315–324. https://doi.org/10.1016/j.oraloncology.2007.08.015

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gracie Vargas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Villarreal, P., Pal, R., Vargas, G. (2020). In Vivo Epithelial Metabolic Imaging Using a Topical Fluorescent Glucose Analog. In: Basel, M., Bossmann, S. (eds) Cell Tracking. Methods in Molecular Biology, vol 2126. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0364-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0364-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0363-5

  • Online ISBN: 978-1-0716-0364-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics